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Abstract

Population diversification strategies are ubiquitous among microbes, encompassing random phase-variation (RPV) of pathogenic

bacteria, viral latency as observed in some bacteriophage and HIV, and the non-genetic diversity of bacterial stress responses.

Precise conditions under which these diversification strategies confer an advantage have not been well defined. We develop a model

of population growth conditioned on dynamical environmental and cellular states. Transitions among cellular states, in turn, may be

biased by possibly noisy readings of the environment from cellular sensors. For various types of environmental dynamics and

cellular sensor capability, we apply game-theoretic analysis to derive the evolutionarily stable strategy (ESS) for an organism and

determine when that strategy is diversification. We find that: (1) RPV, effecting a sort of Parrondo paradox wherein random

alternations between losing strategies produce a winning strategy, is selected when transitions between different selective

environments cannot be sensed, (2) optimal RPV cell switching rates are a function of environmental lifecycle asymmetries and

environmental autocorrelation, (3) probabilistic diversification upon entering a new environment is selected when sensors can detect

environmental transitions but have poor precision in identifying new environments, and (4) in the presence of excess additive noise,

low-pass filtering is required for evolutionary stability. We show that even when RPV is not the ESS, it may minimize growth rate

variance and the risk of extinction due to ‘unlucky’ environmental dynamics.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

‘‘Adversity has the effect of eliciting talents, which in
prosperous circumstances would have lain dormant.’’—
Horace (65BC-6BC)

Why do some bacterial environmental responses blink
on and off like Christmas lights while others respond
definitively or in graded fashion to environmental and
cellular signals? Examples of these ‘blinking’, or phase
e front matter r 2005 Elsevier Ltd. All rights reserved.
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variable phenotypes include type I and IV pilus varieties
in uropathic Escherichia coli, Neisseria gonorrhoeae, and
Neisseria meningitidis (Abraham et al., 1985; Howell–
Adams and Seifert, 2000; Power et al., 2003); toxin
production, fimbriae, lipopolysaccharide variants, and
restriction-modification genes in Mycobacterium pulmo-

nis (Dybvig et al., 1998); outer membrane proteins in
Dichelobacter nodosus (Moses et al., 1995); flagellum in
Salmonella typhimurium (Bonifield and Hughes, 2003);
phage growth limitation machinery in Streptomyces

coelicolor (Sumby and Smith, 2003); and many others
(Henderson et al., 1999; Hallet, 2001).

The machinery that implements phase variation is
diverse, providing an intriguing example of convergent
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evolution. Phase variation mechanisms involving rever-
sible genetic changes in specific genomic loci include
slipped-strand mispairing mechanisms, site-specific
DNA rearrangements, and DNA shuffling by gene
conversion and allele replacement (Hallet, 2001). Other
population diversification mechanisms, such as the
methylation-based switch controlling pyelonephritis-
associated pilus (pap) expression in E. coli (Blomfield,
2001; Hernday et al., 2002), and the genetic reaction
networks controlling competence for DNA transforma-
tion, sporulation, and a myriad of alternative metabolic
pathways in Bacillus subtilis (Grossman, 1995; Msadek,
1999), are epigenetic in nature. A particularly fascinat-
ing example is the partitioning of Streptococcus pneu-

moniae populations into lysing ‘donor’ and DNA uptake
‘recipient’ subpopulations, the control of which is
achieved epigenetically by the ComCDE signal trans-
duction pathway (Steinmoen et al., 2002).

Observations of population diversification open up a
number of fundamental questions about the origin and
purpose of phenotypic noise. The most basic of these
questions is whether this noise is controlled or inciden-
tal: evolutionarily advantageous, deleterious, or neutral?
If stress response diversification is indeed controlled and
selected for rather than incidental, this sets the stage for
three lines of inquiry, essentially the ‘what’, ‘how’, and
‘why’ of diversification. The first (what) is the quanti-
fication of stress response diversification in a microbe.
Though microbiologists have measured phenotypic
response heterogeneity of individual developmental
and virulence-associated pathways, for example spor-
ulation and competence for transformation in B. subtilis

(Grossman, 1995) and the environmental modulation of
type 1 piliation rates in uropathic E. coli (Gally et al.,
1993), there have been few systematic efforts to quantify
how microbes map a sensed environment into a plurality
of cellular phenotypes. A second line of inquiry (how)
elucidates the causal basis for diversification. Still
unclear is how environmental signals are transduced to
modulate heterogeneity; the role of pathway ‘cross-talk’ in
coordinating stress phenotypes; the function, if any, of
different phase variation mechanisms; and how non-phase
variable, epigenetic diversification like that found in the
soil growing microbe B. subtilis is achieved. A third line
of inquiry, the focus of this paper and its companion
(Wolf et al., 2005), is on the ‘whys’ of diversification. Why
do bacteria diversify? What are the evolutionary origins
and fitness consequences of diversification?

Control systems, whether human engineered or
biological, balance performance trade-offs between
controllability and sensitivity. A regulatory network
can be tightly controlled, producing a deterministic,
noise-filtered outcome, but it does so at the cost of
reduced sensitivity to small fluctuations in input signals.
Conversely, such a network can be configured to be
highly sensitive to small fluctuations in input signals, but
this sensitivity exacts a cost in the form of noise
sensitivity, which can introduce non-determinism and
generate heterogeneous responses over a population
(Boyd, 1991; Vidyasagar, 1992). Though it is possible
that some population heterogeneity is incidental, present
only because there is no strong selective pressure for
homogeneity and because trade-offs between process
sensitivity and controllability can be resolved in favor of
sensitivity without a loss in fitness, a growing body of
evidence suggests that this is not generally the case.
Diversification phenotypes among pathogenic bacteria
are believed to aid survival within a host by allowing
bacteria to evade the immune system or search a host’s
receptor space (Henderson et al., 1999; Hallet, 2001).
Evasion of the host immune system is thought to be
facilitated by molecular mimicry of host structures by
phase-variable lipopolysaccharides (LPS) in Helicobac-

ter pylori and Campylobacter (Moran and Prendergast,
2001), and by the astounding level of antigenic diversity
produced by 107 different pilus varieties in N. gonor-

rhoeae (used for host attachment and the uptake of
exogenous DNA (Fussenegger et al., 1997)), whereas
phase-variable opa genes in Neisseria are believed to
orchestrate the recognition of different host receptors
and result in tissue tropism (Hauck and Meyer, 2003).
Phase variation between a small number of phenotypes
(e.g. type 1 pili expression) does not fit neatly into these
categories, and for the most part, the experiments and
theory needed to test these hypotheses have yet to be
done. Those that have been performed, such as the
bvgAS knockout and phase-lock experiments in Borde-

tella strains showing that RPV of bvgS is not required
for virulence, but that a Bvg� phenotype is necessary for
growth outside a host (Weiss and Falkow, 1984; Stibitz
et al., 1989; Martinez de Tejada et al., 1998; Coote,
2001), hint at a more complex story than these folk
theories can account for.

Phenotypic diversification has also been hypothesized
to be a form of bet hedging, a survival strategy
analogous to stock market portfolio management. From
this point of view, ‘selfish’ genotypes diversify assets
among multiple stocks (phenotypes) to minimize the
long-term risk of extinction and maximize the long-term
expected growth rate in the presence of (environmental)
uncertainty. Stochastic parsing of viral populations into
lytic and lysogenic (or latent) states, for example, is
believed to have evolved as an adaptive solution to
fluctuations in the availability of bacterial hosts (Mittler,
1996; Stumpf et al., 2002). Dispersal phenotypes could
be subject to bet hedging as well; when an environment
consists of niches that become available stochastically
for colonization, the optimal genotype produces a mix
of dispersing and non-dispersing progeny (Comins et al.,
1980). Bet hedging in the plant kingdom might also be
common, as exemplified by the probabilistic germina-
tion strategies favored by desert plants subjected to
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random rain-drought patterns (Satake et al., 2001).
Further evidence for this view of microbes as single-
celled stockbrokers might be found in observations that
stress phenotypes introduce a trade-off between a fitness
advantage under stress with a fitness defect under more
favorable conditions (Cooper and Lenski, 2000; Kish-
ony and Leibler, 2003). Diversification could be a
response to this trade-off ensuring the availability of
‘favoured’ phenotypes for growth in each environmental
condition.

In this paper and its short companion paper (Wolf
et al., 2005) we use evolutionary game theory to
formally explore the origin and utility of random phase
variation (RPV). Though in silico theories cannot in
themselves definitively explain the genesis and utility of
any particular phase varying phenotype—experiments
are needed for that—an evolutionarily game theoretic
treatment can help uncover general principles at work in
canalizing evolution toward phase varying expression
patterns, and could provide an intellectual framework
from which to design and interpret experiments. Our
game theoretic formulation posits bacteria as players in
a game of survival pitting cell against cell, and cell
against nature. Each cell has a number of moves it can
play in this game. Moves available to cells are cell states
or phenotypes. The number of ‘moves’ in this game can
be few—e.g. pili expression that can be on or off—or
many, for example if different kinds of fimbriae, surface
receptors, hemolysins, toxins, type IV fimbriae, type III
secretion apparatus and other pathways can be turned
on and off in different combinations at different times.
Cells may have sensors that enable them to sense the
environment, and possibly intercellular signals like
quorum sensing peptides as well. These sensors can be
noisy, providing false or misleading information about
the environment. A strategy in this game of survival is a
map from sensor information onto behaviour.
A strategy is called evolutionarily stable (ESS) if a
population of cells adopting this strategy cannot be
invaded by a mutant adopting a different strategy over
the same set of ‘moves’, or phenotypes. Thus, a game
theoretic analysis of cellular behaviour, for example
RPV, looks at behavior as the ESS strategy in a game of
survival. The question then becomes, what was/is the
problem, if this behaviour is the solution? What types of
environments and—because we are interested in the role
of information in determining the ESS—sensing capa-
city select for RPV or other diversification strategies?
Alternatively, given a lifestyle and a set of phenotypes,
what is the best expression strategy? How should
phenotypes be deployed in order to minimize the risk
of extinction?

As shown in this paper and in (Wolf et al., 2005),
evolutionarily stable phenotype expression strategies
depend strongly on the selective forces over the entire

lifecycle of the organism, in conjunction with the ability
of the organism to sense its environment. By lifecycle we
refer to all the environmental conditions that an
organism might find itself in—inside a host, outside a
host, in different host compartments, in different
external environments—and the expected order and
amount of time spent in each. In the sections below we
look at different types of sensor defects (unobservable
environmental transitions, incorrect identification of
environmental states, signal transduction delays, and
additive noise), and different classes of environments
(time-invariant, time-varying and stochastic), and ana-
lyse for combinations that give rise to RPV as an ESS.
Frequency-dependent environments are considered in
(Wolf et al., 2005). For those combinations that do not
select for RPV, we analyse for the ‘alternative’ ESS. As
demonstrated in the sections that follow, a strategy that
is evolutionarily stable under one set of environmental
and sensing conditions can be impossible to implement
or lead to extinction in other circumstances. Moreover,
microbial populations with different sensor profiles in
the exact same environment(s) will adopt different
evolutionarily stable strategies depending on the types
of sensing failures they experience.
2. The microbial diversification game (MDG) model

Our model defines the state of a cell to be the
combined (discrete) expression states of a finite number
of cellular programs (e.g. type 1 pili ¼ ON, flagellar
motility ¼ OFF, toxin synthesis ¼ ON). Cells live po-
tentially complex lifestyles (in and out of hosts, in water
or dirt, in different cellular compartments, in fluctuating
pH, osmolarity, nutrient composition, and so on), which
we represent by a Markov process over a finite number
of environmental states Ei. The cells may be equipped
with environmental sensors q ¼ (DE, Ē) providing
(noisy) estimates of environmental state (Ē) and the
likelihood that an environmental transition has occurred
in the last increment of time (DE). A cell’s overall
lifecycle strategy S is a map from environmental sensor
data q to cellular behavior probability, represented in
our model in terms of sub-strategies Si defined by
Markov chains over cellular state space (S: q/Si).
Thus, a cell’s lifecycle strategy directs cellular behavior
probability on the basis of information gathered from
its sensors, effectively tracing a sensor-modulated
stochastic trajectory through the cellular state space
defining its physiology.

Specifically, our general model captures (1) time-
invariant, deterministically or stochastically time-vary-
ing, or frequency dependent environments, (2) environ-
mental sensors with a range of sensor defects including
unobservable environmental transitions, incorrect iden-
tification of environmental states, signal transduction
delays, and additive noise, and (3) four classes of
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lifecycle strategies: pure, sensor-based pure, sensor-based

mixed, and RPV, in populations that can be either
single-strain and polymorphic. A sensor-based pure
strategy is a deterministic rule based on a potentially
noisy measurement (e.g. express pili if and only if the
sensor reads environment E1, a human bladder). With-
out sensors, or if sensor input is not used, this strategy
reduces to a pure, deterministic rule (always express pili,
or never express pili). Cells adopting a sensor-based
mixed strategy take a potentially noisy measurement of
environmental state and map it onto a cell state
probability (e.g. If the sensor reads E1; then express
pili with probability p). Cells following an RPV strategy
alternate between different cell states (e.g. piliated and
unpiliated) according to a probabilistic rule, with
transition probabilities that may be influenced by
environmental sensor information.

The non-technical reader can skip the rest of this
section, and all other mathematical details in the
remainder of the paper. All results and interpretation
are described in lay-terms in the text, starting in
Section 3.1.

Example (two environmental states, two cell states, and

imperfect sensors): Here we develop the model for the
simple case of a lifecycle that alternates between at most
two environmental states E1 and E2; and a population
with two possible cell states, x and y (e.g. piliated and
unpiliated), and potentially imperfect environmental
sensors. This model is easily extended to an arbitrary
number of environmental and cellular states and other
complexities, as described in Appendix D.

The population follows a trajectory given by Eq. (1),
defined by a state vector ~X and environmental-state
dependent matrices Rdi and Tji; i; j 2 f1; 2g; to be defined
below:

~X kþ1 ¼ RdiðkÞTjiðkÞ~X k: (1)

The population state vector ~X ¼ ½x1 y1 x2 y2

0; where

xi is the number of cells in the population in state x with
sensors reading ~E ¼ Ei (i ¼ 1 or 2), and yi is the number
of cells in the population in state y with sensors reading
~E ¼ Ei: The rate matrix Rdi ¼ eRiDt is the discretized
version of the continuous-time growth rate matrix Ri

(shown below), derived from the rate equations for the
Master Equation (Gillespie, 1992; Rao et al., 2002)
tracking Pr([x1 y1 x2 y2] ¼ [n m r q]) in environment Ei,
where n, m, r, and q are nonnegative integers:
Ri ¼

lxðiÞ � mxðiÞ � sq1;2ðiÞ � sx1 sy1

sx1 lyðiÞ � myðiÞ � sq1;2ðiÞ � sy1

sq1;2ðiÞ 0

0 sq1;2ðiÞ

2
66664
In the matrix Ri; lsðiÞ and msðiÞ are the birth and death
transition probability rates, respectively, of cells in state
s ðs ¼ x or yÞ in environment Ei (i ¼ 1 or 2). Growth
rates lsðiÞ � msðiÞ can be constants (Random matrix
formulation (Tuljapurkar, 1990; Caswell, 2001), as in
Sections 3.1 and 3.2 of this paper. Growth can also be a
function of the population composition ~X=ð

P
i

ðxi þ yiÞÞ

(frequency-dependent models, as in part II of this study
(Wolf et al., 2004)), or a function of the overall size of
the population nðtÞ ¼

P
iðxi þ yiÞ (indirect representa-

tion of nutrient limitation and stationary growth phase
(Caswell 2001, Chapter 16)). Parameters sxj and syj are
transition probability rates of switching from cell state
x-to-y or y-to-x, respectively, when the environmental
sensor reads ~E ¼ Ej: Parameter sq1;2ðiÞ is the transition
probability rate of sensor output from state ~E ¼ E1 to
~E ¼ E2 when in environment Ei: Thus, the diagonal
elements of the rate matrix Ri represent the instanta-
neous change in the number of cells in cell state s with
sensors reading ~E ¼ Ej in environment Ei due to (1) cell
birth (e.g. the subpopulation of x cells in environment
E1 replicates at rate lx(1)), (2) cell death (e.g. this
subpopulation dies out at rate mx(1)), (3) sensor-state
transitions due to noise or re-sampling (e.g. this
subpopulation loses members due to sensor transitions
at rate sq1;2ð1Þ), and (4) cell state transitions (e.g. this
subpopulation loses members due to cell state switching
at rate sxj).

The off-diagonal elements in Ri represent increases in
the number of cells in a subpopulation due to cell state
switching (e.g. syj, the y-to-x transition probability rates,
contribute to the size of the subpopulation in cell state
x), and sensor state switching (e.g. sq2;1ð1Þ contributes to
the size of the subpopulation in sensor state ~E ¼ E1).
Together, the diagonal and off-diagonal entries in each
row of Ri contribute to the incremental rate of change of
the size of the associated subpopulation in the total
population vector ~X ¼ ½x1y1x2y2


0:
Viewed at a higher level of abstraction, the rate matrix

implements three interlocking Markov processes, two
corresponding to phenotype expression strategies, and
one corresponding to sensor dynamics. The cell state
switching rates (sxj, syj) define (Markov) sub-strategy Sj,
which can be either pure (sxj ¼ 0 or syj ¼ 0) or phase
variable (sxj 40 and syj 40) (see Table 1). Similarly,
sensor dynamics are governed by a Markov chain
(sq1;2ðiÞ; sq2;1ðiÞ) over sensor states (~E ¼ E1; ~E ¼ E2), a
sq2;1ðiÞ 0

0 sq2;1ðiÞ

lxðiÞ � mxðiÞ � sq2;1ðiÞ � sx2 sy2

sx2 lyðiÞ � myðiÞ � sq2;1ðiÞ � sy2

3
77775:

(2)
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Table 1

Strategies representable by the MDG model

Strategy Example Parameter constraints

Sensor-independent pure Express pili sx1 ¼ 0; sy140; sx2 ¼ 0; sy240;

P1 ¼ 1; P2 ¼ 0

Sensor-based pure IF the sensor reads environment E1; express pili; ELSE, do not sx1 ¼ 0; sy14Kf
b; sx24Kf; sy2 ¼ 0;

P1 ¼ 1; P2 ¼ 0

Sensor-based pure; LPFa IF the sensor reads environment E1; express pili; ELSE, do not.

Low pass filter the sensor signal

sx1 ¼ 0; Kf bsy140; Kfbsx240;

sy2 ¼ 0; P1 ¼ 1; P2 ¼ 0

Sensor-based mixed IF the sensor reads E1; express pili with probability P1ð0oP1o1Þ sx1 ¼ 0; sy14Kf; sx24Kf; sy2 ¼ 0;

P1 o1; P240.

Sensor-based mixed; LPF IF the sensor reads E1; express pili with probability P1ð0oP1o1Þ:
Low-pass filter the sensor input signal

sx1 ¼ 0; Kf bsy140;

Kfbsx240;sy2 ¼ 0; P1 o1; P240

Random phase variation (RPV) IF the sensor reads Ei, randomly alternate between piliated and

unpiliated states at rates ðsxi; syiÞ

sx140; sy140; sx240; sy240;

P1 ¼ 1; P2 ¼ 0

aLPF ¼ low-pass filtered.
bKf is a fast switching rate, E3–20 for the other parameters used in this paper.

Table 2

Environmental sensor defects representable by the MDG model

Sensor feature Categories and parameter regimes

Observability (O) (environmental

transitions)

Perfect (pObs ¼ 1); none (pObs ¼ 0); imperfect (0opObso1)

Accuracy (A) (identifying environments) Perfect (Psii ¼ 1; Psij ¼ 0:iaj); none (Psij ¼ 0:5); imperfect (Psiio1 or 0oPsij : iaj)

Additive noise (N) None (rate ¼ 0); high (rate4Kn
a); some (0orateoKn) sqi;j ¼ rate=2

Delays (D) Short (sx þ sy � �b); long ðsx þ syo�)
Sampling frequency (informative noise) None (rate ¼ 0); high (rate4Kn); medium ð0orateoKnÞ:sq2;1ð1Þ ¼ rate=ð1 þ r1Þ; sq1;2ð1Þ ¼

r1 � sq1;2ð1Þ; sq1;2ð2Þ ¼ rate=ð1 þ r2Þ; sq2;1ð2Þ ¼ r2

�sq1;2ð2Þ; r1 ¼ pObsPs21=Ps11 þ ð1 � pObsÞ; r2 ¼ pObsPs12=Ps22 þ ð1 � pObsÞ

aKn is a high level of noisy sensor-state switching, E1–20 for the other parameters used in this paper.
b� is a slow cell-state switching rate, in effect implementing a signal transduction delay (E0.1 for the other parameters used in this paper).
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formulation that contributes to the model’s ability to
represent different levels of sensor accuracy, additive
noise, and signal processing delays (see Table 2).

Next we introduce the environmental transition
matrices Tji: These matrices permit representation of
sensor-based mixed strategies, and explicitly capture the
ability of a sensor to observe environmental transitions,
a probability that is decoupled from the sensor’s
accuracy in identifying a new environment should a
transition be observed. If the environment is time
varying, then at each time step k; the environment can
either stay the same as it was at the previous time step,
or transition to a new environmental state. If the
environment does not change at time step k ðEðkÞ ¼

Eðk � 1Þ ¼ EiÞ; then the environmental transition ma-
trix Tii is the identity matrix I4�4 (1’s along the
diagonal, 0 at off-diagonals). In this case, the population
vector is updated according to the map ~X kþ1 ¼

RdiðkÞ~X k (Eq. (1) with Tji ¼ I4�4). If, however, the
environment does change at time step k, transitioning
from Ej to Ei, i6¼j, Tji is given by the matrix T12 ¼

½ð1 � pObs12ÞI þ pObs12MS1
 if the environment transi-
tions from state E1 to E2; and by T21 ¼ ½ð1 � pOb21sÞI þ

pObs21MS2
 if the environment transitions from state E2
to E1: These transition matrices are functions of (1) the
parameter pObsji 2 ½0; 1
; the probability that an environ-
mental state transition from Ej to Ei is observed by a
cell, and (2) sensor accuracy matrices Si; where

Si ¼

Ps1i 0 Ps1i 0

0 Ps1i 0 Ps1i

Ps2i 0 Ps2i 0

0 Ps2i 0 Ps2i

2
6664

3
7775 (3)

and the non-zero matrix entries Psij are the probabilities
that the environmental sensor reads ~E ¼ Ei after the
environment changes to ~E ¼ Ej should a transition be

observed. The rows of the sensor accuracy matrix Si take
the fraction of the population that observed an
environmental transition (pObsji) and repartition it
according to the ability of the sensors to accurately
identify a new environmental state. If, for example, the
sensor is perfect, all cells observe an environmental
transition should it occur (pObsji ¼ 1), and all cells
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correctly identify the new environmental state (Psij ¼ 1
if i ¼ j, and Psij ¼ 0 if iaj).

Transition matrices Tji are also functions of a strategy
mixing matrix M, where

M ¼

P1 0 P2 0

0 P1 0 P2

1 � P1 0 1 � P2 0

0 1 � P1 0 1 � P2

2
6664

3
7775 (4)

and Pi; i ¼ 1; 2; are the probabilities defining mixed
strategies (i.e. if the sensor registers an environment
transition, and the estimate of the new environmental
state is ~E ¼ Ei; pick sub-strategy S1 (defined by sx1 and
sy1) with probability Pi and sub-strategy S2 (defined by
sx2 and sy2) with probability (1 � Pi). The first column
of M partitions the subpopulation of cells in state x with
sensors reading ~E ¼ E1 (implementing sub-strategy S1)

into fractions, with P1 of the cells retaining the x cell
state and S1 sub-strategy, and 1 � P1 of the cells
retaining the x cell state but shifting to the S2 sub-
strategy. If, for example, S1 is the pure strategy of all
cells being in the x-state (sx1 ¼ 0 and sy140), and S2 is
the pure strategy of all cells being in the y-state (sx240
and sy2 ¼ 0), then an application of M with P1o1 has
the effect of probabilistically diversifying the population
into x and y subpopulations upon sensing an environ-
mental transition.

Fig. 1 summarizes the model of Eq. (1). In short, if the
environment does not change at time kDt; the popula-
tion vector ~X is updated according to the rate matrix Ri,
which captures cell birth, death, cell state switching, and
sensor dynamics. If the environment does change state
E1

gy>gx

E2

gx>gy

p1,2

p2,1

1-p 2,11-p 1,2

Time-varying environment

Psii

Psij

Transition matrix Tji (k) 

Time k   t∆

∆Ei?=

x1 (k)

x2 (k)

y1 (k)

y2 (k)

Xk

no

Observers

Non-
observers

yes

Correc

Incorrec

p
Obs

1-pObs

Accuracy SiObservability pObs

∆E E

E

i

(a)

(b)

Fig. 1. Schematic representations of the microbial diversification game (MDG

of Eq. (5) (b). The mathematical details of the model are discussed in the tex

composition of a population of cells, including (imperfect) environmental sen

cell state- dependent growth rates.
at time kDt; the observability parameter pObsji partitions
the population into those cells that observe the
transition ðpObsji

~X Þ and those that do not ðð1 �

pObsjiÞ
~X Þ: Of the cells that do observe a transition, the

accuracy matrix Si further partitions the subpopulation
into those cells that correctly determine the new
environmental state, and those that do not. If the
population uses a mixing strategy, the subpopulation
that observed the environmental transition is further
partitioned probabilistically by the mixing matrix M

into subpopulations adopting sub-strategies S1 (defined
by sx1 and sy1) and S2 ðsx2; sy2Þ . Following these
successive partitions, the rate matrix Ri is applied to
capture cell birth and death, and to complete the
implementation of the sensor dynamics and the pure,
sensor-based pure, sensor-based mixed, or RPV strategy
employed by the population to survive. Tables 1 and 2
provide the constraints on the strategy parameters
S ¼ ðsx1; sy1; sx2; sy2;P1;P2Þ and the sensor profile
parameters Q ¼ ðpObsij ;Psij ; sqi;jðkÞÞ; i; j; k ¼ 1 : 2; that
enable the model to represent a variety of pure, mixed,
or random phase varying strategies, and the entire range
of environmental sensor defects.

If the environment is time varying and stochastic,
the environmental state EðkÞ is governed by the
Markov chain

PE1ðk þ 1Þ

PE2ðk þ 1Þ

" #
¼

1 � p1;2 p2;1

p1;2 1 � p2;1

" #
PE1ðkÞ

PE2ðkÞ

" #
; (5)

where PEiðkÞ is the probability of the environment being
in state Ei at time kDt and pi,j is the probability of an
Ei to Ej transition over one time step (Fig. 1b). The
P1

P2

1-P1

1-P2

sx1

µ µ
xλ λx yy

Time (k+1)∆t

t

t

Rate matrix Ri (k)

x1

x2

y1

y2
S2

S1
sy1

sx2

sy2

sq1,2 sq2,1 sq1,2 sq2,1

Mixing M
yyµ µxλ λx

x1 (k + 1)

x2 (k + 1)

y1 (k + 1)

y2 (k + 1)

) model of Eq. (1) (a), and the stochastically time-varying environment

t. The diagram in (a) shows all the factors that impact the growth and

sing, phenotype expression and diversification, and environmental- and
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stationary distribution over environmental states is
ðp1;p2Þ ¼ ðp2;1=ðp1;2þp2;1Þ; p1;2=ðp1;2þp2;1ÞÞ: In this case,
Eqs. (1) and (5) are simulated together, with Eq. (5)
producing a string of environmental states Eð1Þ;Eð2Þ; . . .
EðkÞ, which key into environmentally dependent ma-
trices Rdi and Tji in Eq. (1) to compute the associated
population growth and composition trajectory. Alter-
natively, deterministic, periodic environmental variation
is easily implemented, as are non-Markov environmen-
tal state distributions. For a detailed description of the
simulation algorithms and the parameter ranges used,
see the Materials and methods section.

Evolutionarily stable strategy (ESS): In (Maynard
Smith, 1973), Maynard Smith defines an evolutionarily
stable strategy to be one that is uninvadable by a rare
mutant with access to same set of game ‘moves’, or
cellular states (all bets are off if mutants have new
competing or predatory cell states—a scenario that falls
outside the scope of classical evolutionary game
theory). Within this framework, strategy I is an ESS

if, for all JaI ;W ðJ; IÞoW ðI ; IÞ; where W ðA;BÞ is the
fitness of a single A strategist in a population of B

strategists, or if W(J,I) ¼ W(I,I) and, for small q;
W ðJ;Pq;I ;I ÞoW ðI ;Pq;J;I Þ; where W ðI ;Pq;J ;I Þ is the fit-
ness of a J strategist in a population P consisting of
qJ þ ð1 � qÞI (Maynard Smith, 1982). The latter condi-
tion defines the ESS as a mixture of J and I. If the
lifecycle is deterministic and the population equations
are linear, then the fitness of a strategy is given by the
Malthusian exponent (maximum eigenvalue) of the
population equations (Caswell, 2001). For example,
cells with two possible cellular states x and y living in a
periodically time-varying environment that alternates
between spending N1 generations in environmental
state E1 and N2 generations in E2; the ESS (if unique)
is that strategy S ¼ ðsx1; sy1; sx2; sy2;P1;P2Þ maximizing
aS ¼ max(eig(½T21RN2

d2 T12RN1
d1 
)), given the cell- and

environmental-state-dependent cell growth rates lxðiÞ;
mxðiÞ; lyðiÞ; and myðiÞ), i ¼ 1 : 2; and the sensor profile of
the population Q ¼ ðpObsji;Psij ; sqi;jðkÞÞ; i,j,k ¼ 1:2 (used
in Sections 3.1 and 3.2).

The Lyapunov exponent, logðlsÞ ¼ lim
t!1

log ðNðtÞÞ=t;

where NðtÞ ¼
P

jX̄ ðiÞ is the number of cells in the

population at time t; is often used in ESS analysis of
populations inhabiting stochastically time-varying en-
vironments, a practice supported by Tuljapurkar’s proof
that Strategy A can invade Strategy B with probability 1

if and only if logðlsÞ
A4 logðlsÞ

B (Tuljapurkar, 1982,
1990). However, the use of Lyapunov exponents in ESS

analysis suffers from a serious drawback: it does not

take quasi-extinction into account, and thus neglects the
risks of extinction due to out-competition by a mutant
over the short term or from ‘unlucky’ environmental
trajectories. Thus we look at strategies that maximize

logðlsÞ; but also track growth rate variance s2: Together
these measures provide a better measure of fitness than
does logðlsÞ alone (e.g. (Lande and Orzack, 1988) and
Section 14.8.1 in (Caswell (2001)). For details on our

strategy fitness, ESS, logðlsÞ; and s2 calculations, see the
Materials and methods section.
3. Results

3.1. Eyes shut: phase variation without sensors in a time-

varying environment

Consider a hypothetical bacterium with perfect, noise-
less sensors capable of transducing environmental signals
into a reliable measure of environmental state. Such a
bacterium unequivocally ‘knows’ whether it is in a host or
outside a host, in the bladder or in the gut, in water or in
the dirt. In optimization terms, perfect sensors render the
problem completely separable. Evolutionary forces can
potentially craft different survival strategies for each
environment in the lifecycle, and switch between them
upon transition from environmental state to environ-
mental state. If, for example, a bacterium with two
possible cell states x and y (say piliated and unpiliated
states) can be in one of two environmental states, E1 or
E2 (in the host or in the dirt), and if environment E1
selects strongly for x and strongly against y; while E2
selects strongly against x and strongly for y; the optimal,
evolutionarily stable strategy for perfect-sensing cells with
no implementation cost for transition from one phenotype
to another is for the entire population to be in state x

while in E1; and in state y while in E2: This deterministic
strategy, known in game theory as a (sensor-based) pure
strategy (in situation 1, do A; in situation 2, do B)
(Maynard Smith, 1982), leads to optimally unbounded
growth of the population and uninvadability.

However, without environmental sensors (e.g. two-
component systems), this strategy is not realizable.
Without environmental sensors, the problem of finding
a best phenotype expression strategy is no longer

separable over the lifecycle of the organism. A bacterium
without a sensor does not know whether it is in a host,
in the dirt, in the water, or elsewhere and thus cannot
adjust its expression strategy according to the demands
of each particular environmental state. The strategies
available to the two cell state, two environment example
above are (1) the entire population in state x; (2) the
entire population in state y; (3) a (statically) mixed
population (i.e. a polymorphism in x and y; either
genetic or the product of an infinitely long-lived,
heritable, epigenetic differentiation), and (4) phase
variation of individual cells between states x and y:
Within phase variation is the possibility of phenotype
switching that is either coupled or uncoupled to
replication machinery, and with switching rate prob-
abilities that are fixed, time varying, or themselves
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Fig. 2. RPV promotes survival in cells without environmental sensors

living ‘Devil’s Compromise’, time-varying environments. Cells can be

in two cell states, x or y; and the environment alternates between being

in state E1 (selects for x and against y) and E2 (selects for y and

against x) according to a Markov process with environmental

transition probabilities p1;2 ¼ p2;1 ¼ 0:1 (environment alternates be-

tween spending an average 10 generations in E1 and E2). (a)

Populations that are all in state x; all in state y; or a polymorphic

mixture of x and y cells eventually go extinct. This plot shows 100

different trajectories starting with a polymorphic population consisting

of two x cells and two y cells. (b) Populations of random phase

variable cells, which alternate between being in cell states x and y

(sx ¼ sy ¼ 0:1), can proliferate. For both plots, growth rates lxð2Þ �

mxð2Þ ¼ lyð1Þ � myð1Þ ¼ �0:4 and lxð1Þ � mxð1Þ ¼ lyð2Þ � myð2Þ ¼ 0:3;
Dt ¼ 1:
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probabilistic with uni-, bi-, or multi-modal distributions,
though we will concentrate on the Markov model
presented in the previous section.

If the entire population is in state x; the optimal
solution in E1 but not E2; and ðgx1Þ

p1
ðgx2Þ

p2o1
(gxi ¼ growth rate (1/gen) of x cells in environment Ei;
pi ¼ the fraction of time the environment spends in Ei),
eventually the allele will go extinct. Likewise, if the
entire population is in state y; the optimal solution in E2
but not E1; and ðgy1Þ

p1
ðgy2Þ

p2o1 (gyi ¼ growth rate
(1/gen) of y cells in environment Ei), extinction also
results. Genetic polymorphisms die out as well, as E1
eventually kills off the y-subpopulation, and E2 extin-
guishes the x-subpopulation (for a proof that temporally
fluctuating environments do not promote polymorphism,
see (Gillespie, 1973)). Only strategy (4), phase variation,
has the potential for promoting survival when counter-
selective forces are this strong and oppositely oriented in
the two environmental states (see Figs. 2, 3a,b).

RPV as a Devil’s Compromise or Parrondo game: We
prove that with missing environmental sensors, a
stochastically or periodically time-varying environment
can select for phase varying phenotype expression, if

different environmental states select for different cell
states, and if the environmental autocorrelation is
sufficiently large. We call this scenario a Devil’s
Compromise, because RPV is not optimal in any one
environmental state, yet it is required for survival over
the lifecycle of the organism. Alternatively, RPV can be
viewed as a sort of Parrondo paradox wherein random
alternations between losing strategies produce a
winning strategy (Harmer et al. 2001). Specifically, for
large enough environmental autocorrelation rE or
lifecycle period T ; there exist switching transition
probabilities sx and sy (switching rates from x to y

and y to x (1/gen), respectively) resulting in unbounded
growth of the population, a result that holds in the more
general case of m environments and n cell states,
as proved in the Appendix A and formally stated below
in Theorem 1.

Theorem 1. (RPV can promote survival in a time-
varying environment).

Suppose the lifecycle of a bacterial population consists

of m environmental states E1; . . . ;Em governed by an

underlying Markov chain M which is ergodic. Let

ðp1; . . . ; pmÞ be its stationary distribution. We will assume

there is a number p40 such that the probability of the

population leaving any environmental state Ejispp (and

hence the probability of staying in EjisX1 � p). Let

s1; . . . sk be the possible cell states of individual bacteria in

these environments.

Let �; d40 be small constants. Let gi;j denote the

growth rate per generation of bacteria in cell state si while

in environment Ej. We will assume that for each cell
state si,
Qm

j¼1ðgi;jÞ
pjo1 (i.e. populations comprised of pure

strategist cells go extinct). Further, assume that in each

environment Ej, there is a cell state, denoted by tðjÞ, that

has a positive growth rate: gtðjÞ;j41 þ 2�. Let

l ¼
2 logðð1 þ 2�Þðk � 1Þ=�Þ

logð1 þ �Þ

and assume that ppð1 � dÞ=l (i.e. the environment is

sufficiently autocorrelated).
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Let P2 be a population of bacteria that switch from cell

state si to s0i with rate a, for each pair i, i0 of cell states.

Though a population of bacteria that does not

randomly phase vary between cell states will die out with
probability 1, there are rates of switching a such that the

random phase varying population P2 will have unbounded

growth with overwhelming probability.

Proof. See Appendix A.
Optimal switching rates: RPV differs from a mixed

strategy in classical game theory in that the strategy is
defined by how often the players (cells) ‘roll their dice’
over the cell state space, as well as how these die are
weighted probabilistically. Both of these aspects of a
phase variation strategy—dice weights and roll fre-
quency—contribute to its ‘goodness’ as measured by
the long-term growth rate of a population adopting
the strategy. For those lifecycles giving rise to RPV,
cell state switching rates can be too fast or too slow
(Fig. 3a,b), and there are optimal switching rates that
depend upon environmental lifecycle asymmetries and
environmental autocorrelation rE ; a measure of the
speed of environmental transitions (large rE implies
slow transition speed). Numerical experiments reveal
that optimal switching rate magnitudes are inversely
proportional to environmental autocorrelation (the
higher the correlation, the slower the switching rates—
Fig. 4b), whereas optimal switching rate asymmetries
mirror lifecycle asymmetries (Fig. 4a).

These observations can be largely understood in terms
of a trade-off introduced by RPV between the conver-
gence rate to the steady state composition of the
population (fraction of cells in each cell state), and the
‘goodness’ of this steady state (Fig. 3c). Very fast
Fig. 3. RPV cell state switching rates can be too fast, too slow, or

optimal: (a) With no cell state switching, the population quickly goes

extinct (sx ¼ sy ¼ 0; purple curve). If cell state switching rates are too

slow, the population still dies out, but more slowly (sx ¼ sy ¼ 0:01;
grey curve). At the optimal cell state switching probability rates, the

population proliferates at its maximal rate (sx ¼ sy ¼ 0:1; blue curve).

If switching rates are too fast, the growth rate declines (sx ¼ sy ¼ 0:6;
red curve). (b). Contour and mesh (inset) plots showing the long-term

growth rate of the population (maximal eigenvalue of RN1
1d RN2

2d ) as a

function of switching rates sx and sy: Outside the red ‘survival’ curve,

the population has a negative growth rate (MaxðeigÞo1). Inside this

curve, it has a positive growth rate (MaxðeigÞ41). The maximal, ESS

value occurs at sx ¼ sy � 0:1: (c) Population composition fx ( ¼ x/

(x+y) ¼ number of x cells in the population/(total number of x and y

cells)) as a function of time for different cell state switching rates

ðsx; syÞ: At slow switching rates, the steady-state population composi-

tion approaches the ideal of all-x in E1 (fx ¼ 1) and all-y in E2

(fx ¼ 0), but the time it takes to reach this steady state is detrimentally

slow (sx ¼ sy ¼ 0:01; black curve). At fast switching rates, the steady

state population composition is far from the ideal, but convergence

time to this steady state is fast (sx ¼ sy ¼ 0:6; red curve). The optimal

cell switching rates balance the benefits of fast convergence to steady

state with the costs of non-optimal steady-state composition most

advantageously (sx ¼ sy ¼ 0:1; blue curve). For these plots, the

environment is periodic, alternating between 10 generations spent in

E1 and 10 generations spent in E2 ðN1 ¼ N2 ¼ 10Þ: Growth rate

parameters are as in Fig. 2
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Fig. 4. Optimal switching rates depend on environmental lifecycle

asymmetries and environmental autocorrelation: (a) Asymmetric

lifecycles yield mirror asymmetric optimal switching rates. A lifecycle

alternating between N1 ¼ 40 generations in E1 and N2 ¼ 12 genera-

tions in E2 has optimal switching rates of ðsx; syÞ ) ð0:01; 0:1Þ (red

curve). Note that N1=N241 ) sy=sx41: (b) The higher the environ-

mental autocorrelation or lifecycle period, the slower the optimal

switching rates. A lifecycle alternating between 1000 generations in E1

and 1000 generations in E2 has optimal switching rates of ðsx; syÞ �

ð0:001; 0:001Þ; in contrast to the faster optimum shown in Fig. 3b with

N1 ¼ N2 ¼ 10: Growth rate parameters are as in Figs. 2 and 3.
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switching rates can slow growth or lead to extinction
because though the convergence rate to steady state is
accelerated by fast switching, generally of benefit to the
long-term growth rate of the population, this accelerated
convergence is achieved at the expense of a suboptimal
steady state population composition. If switching rates
are extremely fast, the steady-state composition f xiðSSÞ

approaches sy=ðsx þ syÞ; (f xiðSSÞ ¼ limt!1(# cells ex-
pressing x)/(total # cells) in environment Ei), a
composition far from the ideal of being all-x in E1
ðf x1ðSSÞ ¼ 1Þ and all-y in E2 ðf x2ðSSÞ ¼ 0Þ: At a
composition approaching sy=ðsx þ syÞ; the total growth
rate of the population in Ei approaches giðRPV 0Þ ¼

gxif x1ðSSÞ þ gyi ð1 � f x1ðSSÞÞ ¼ gxiðsy=ðsx þ syÞÞ þ gyi

ðsx=ðsx þ syÞÞ: Extinction results if
Qm

j¼1gjðRPV 0Þ
pjo1:

If, for example, gx1 ¼ gy2 ¼ 1:3 and gy1 ¼ gx2 ¼ 0:6; fast
symmetric switching rates lead to extinction because
g1ðRPV 0Þ ¼ g2ðRPV 0Þ ¼ ðgx1 þ gy2Þ=2 ¼ 0:95:

At very slow switching rates, the steady-state compo-
sition in each environment can approach the ideal,
e.g. f x1ðSSÞ ! 1 and f x2ðSSÞ ! 0: However, the time it
takes to reach this optimal composition can be long. So
long, in fact, that if the cell state transition rate is very
slow relative to the environmental transition rate, the
environment can repeatedly cycle between opposing
environments without cell state switching occurring, and
thus ‘miss’ environmental transitions and the growth
boost afforded to the preferred cell states. Even if
environmental transitions are not missed, as in Fig. 3c, a
growth rate deficit accrues during the time spent
converging to the steady-state composition, resulting
in a loss of fitness.

Thus, optimal switching rates are those that most
advantageously balance the benefits of fast convergence
with the costs of non-optimal steady-state composition,
a fulcrum largely determined by environmental auto-
correlation and asymmetries. Large environmental
autocorrelations imply lengthy stays in a single environ-
ment, meaning that the population will be at its steady-
state composition f xðSSÞ most of the time in many
environments. In such a lifecycle, the benefits of having
a near-optimal f xðSSÞ dominate the cost of slower
convergence to steady state, and the optimal switching
rates are quite slow. Whereas if environmental auto-
correlations are such that the time scale of environ-
mental transitions is close to that of the growth rates of
the selected cell state in each environment, the benefits
of fast convergence to f xi outweigh the costs of sub-
optimal f xi; and optimal switching rates are relatively
fast. For example, ðsx; syÞopt � ð0:9; 0:9Þ if N1 ¼ N2 ¼ 2
(Ni ¼ the number of generations spent in Ei), whereas if
N1 ¼ N2 ¼ 1000 (assuming identical growth rates in E1
and E2), ðsx; syÞopt � ð0:001; 0:001Þ (Fig. 4b). For
periodic environments, optimal switching rate magni-
tudes are on the order of 1/N, where N ¼ N1 þ N2 is
the environmental lifecycle period, an observation
supported by analytical work by Lachmann and
Jablonka (1996). However, optimal switching rates tend
to be relatively slower in the Markov environment case,
even if the mean amount of time spent in each
environmental state is the same as for the periodic case.
If the lifecycle is skewed to spend more time in E1
(selecting for x and against y) than E2 (selecting for y

and against x), or if the growth rate of x in E1 exceeds
the growth rate of y in E2; then ðsy=sxÞopt41 to ‘take
advantage’ of the environmental asymmetry (Fig. 4a).
The skewed switching rates provide a growth rate boost
in the dominant environment E1 at the expense of a
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growth rate deficit in E2; with the overall effect being a
maximization of the long-term growth rate of the
population (but not a minimization of growth rate
variance, as discussed below). These dependencies
provide clues on the origins of switching rate profiles
and the multiplicity of mechanisms seen in randomly
phase varying populations (see Section 4).

Stockbrokers in the dish: RPV can minimize growth

rate variance and extinction probability, even when it

does not maximize growth rate. Theorem 1 concerns
the extreme scenario of a lifecycle with such stringent
and opposite selective criteria that no cell can hope
to survive without the benefit of RPV (i.e.
ðgi1Þ

p1
ðgi2Þ

p2 . . . ðgimÞ
pmo1; for all cell states i). Is

RPV still advantageous under less stringent selection?
Numerical investigations suggest that if the selective
forces over the lifecycle, while oppositely oriented,
are less extreme, admitting a positive long-term
growth rate to pure, non-phase varying populations
(e.g. ðgi1Þ

p1
ðgi2Þ

p2 . . . ðgimÞ
pmo1; for at least some cell

states i), RPV still maximizes long-term growth rate
if the lifecycle is symmetric or near-symmetric, or if
the lifecycle is strongly asymmetric but the environ-
mental autocorrelation or lifecycle period is high
(Fig. 4).
Fig. 5. RPV can minimize the growth rate variance and the probability of ex

not maximize the stochastic growth rate (and thus is not considered ESS).

Environment cycling between E1 and E2 with transition probability r

(log(ls)pure ¼ 0.230570.0024, yellow line in (a)) than does a random

(log(ls)RPV ¼ 0.18147.0011, yellow line in (b)), it also has a much highe

s2
RPV ¼ 0:0338). This larger growth rate variance and the high death rate i

trajectories, as evidenced by the 4/200 trajectories leading to extinction show

shown in (b). Growth rates are as in Fig. 2; for each trajectory, the starting p

distribution pE1ð0Þ ¼ 0:1 and pE2ð0Þ ¼ 0:9; the starting population size is 4
If, however, the lifecycle is strongly asymmetric and
the environmental autocorrelation or lifecycle period is
relatively short, RPV may no longer maximize the
expected long-term growth rate of the population (as
measured by the maximal eigenvalue in deterministic
environments or the Lyapunov exponent in stochastic
environments). In this case, the expected long-term
growth rate of a monomorphic, non-phase varying
population exceeds that of random phase variable cells.
If, for example, the population spends about 50
generations in E2 for every 5 generations spent in E1
(p1;2 ¼ 0:18; p2;1 ¼ 0:02), the Lyapunov-exponent max-
imizing strategy is for the population to be all-y, the
selected state in E2 (Fig. 5a). However, in stochastic
environments, there is more to fitness than long-term
growth rate as measured by the Lyapunov exponent
logðlsÞ (see Section 2). Arguably, contemporary bacter-
ial species are contemporary because their phenotype
expression strategy minimizes the risk of extinction
rather than simply maximizing growth. If so, then one
might imagine a fitness function that captures not only
the long-term risk of extinction due to out-competition
from mutants (maximizing logðlsÞ) or the risk of
extinction due to the cell vs. (random) nature aspect of
the game (minimizing expðlogðlsÞlogðyÞ=s2Þ if logðlsÞ40;
tinction due to ‘unlucky’ environmental trajectories, even when it does

Though a pure strategy, all-y population in an asymmetric Markov

ates p1;2 ¼ 0:18 and p2;1 ¼ 0:02 has a higher Lyapunov exponent

ly phase varying population with switching rates sx ¼ sy ¼ 0.1

r growth rate variance s2 than the RPV population (s2
pure ¼ 0:1048;

n E1 makes the pure strategy more vulnerable to rare environmental

n in (a), in contrast to 0/200 extinction events for the RPV population

robability of being in each environmental state is set to the stationary

, and the extinction threshold is set at 0.05.
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where s2 is the growth rate variance and y is the ‘quasi-
extinction’ population density (Lande and Orzack, 1988;
Caswell, 2001, p. 445)), but one that reflects all the risks
inherent to the game of survival pitting cell against cell,
and cell against nature, probabilistically weighted over
all relevant time scales. Without knowing the exact form
of this fitness function, one can conjecture that it will
strike a balance between maximizing long-term growth
rate logðlsÞ and minimizing the growth rate variance s2

and perhaps higher-order moments (see Doebeli, 1995),
as do stock market investment strategies.

Whether operating with no information or noisy
estimates, there is a parallel between cellular diversifica-
tion strategies and stock portfolio investment strategies,
where cells are dollars, cell states are stocks, and return
is the long-term growth rate of the population. Stock
market investors choose investment strategies based on
a desire to maximize expected profit subject to some
tolerance for risk. It is a well-known principle, and
common practice, that diversification of a portfolio
produces the minimum risk for a given expected long-
term return on an investment (Merton, 1982). RPV (and
sensor-triggered diversification, described in the next
section) can be understood as different types of portfolio
rebalancing, the frequency and probability distribution
of which depend upon how good one’s information is
about the environment, or ‘market’, and on ‘market’
dynamics. As in the stock market, numerical investiga-
tion reveals that even in lifecycles for which RPV does
not maximize long-term (stochastic) growth rate, for
instance those with strongly asymmetric lifecycles as
presented above, RPV can minimize growth rate
variance and ensure the existence of subpopulations
with positive growth rates in all environments, thereby
potentially minimizing the risk of being extinguished by
rare catastrophic environmental trajectories. For exam-
ple, though a pure strategy, all-y population has a
higher Lyapunov exponent in a Markov environment
cycling between E1 and E2 with transition probability
rates p1;2 ¼ 0:18 and p2;1 ¼ 0:02 than does a ran-
domly phase varying population with sx ¼ sy ¼ 0:1
(logðlsÞpure ¼ 0:23054logðlsÞRPV ¼ 0:1814), it also has a
much higher growth rate variance s2 than does the RPV

population (s2
pure ¼ 0:10484s2

RPV ¼ 0:0338).
A strategy that minimizes growth rate variance is a

type of security strategy rendering the population
relatively indifferent to the environmental trajectories
produced by an opposing player, nature. Intuitively,
RPV can minimize the growth rate variance because the
growth rate of an RPV population is slower than that of
the quickly growing pure-y population while in E2; but
faster than that of the quickly dying pure-y population
while in E1; thereby ‘closing the growth rate gap’
between the two environmental states. The larger
growth rate variance of pure strategists, and—more to
the point—the fast kill-rate of y cells in E1; makes the
pure strategist population more vulnerable to rare
environmental trajectories when the starting population
size is small than is an RPV population. This point is
illustrated in Fig. 5 by the 4/200 trajectories leading to
extinction of a pure-strategist population, in contrast to
0/200 extinction trajectories for the RPV population.
Simulations like these suggesting a greater likelihood of
extinction are supported by an application of Lande and
Orzack’s approximation of the extinction probability of
a population growing in a stochastic environment as a
direct function of the ratio s2=logðlsÞ; the inequality
s2

pure=logðlsÞpure ¼ 0:45474s2
RPV=logðlsÞRPV ¼ 0:1863

indicates that a pure, all-y population is more likely to
go extinct due to environmental stochasticity than is
the RPV population, even though by virtue of its
larger Lyapunov exponent it should be able to invade
any RPV population and would be considered ESS by
most analysts.

Interestingly, even when the environmental and sensing
profile is such that RPV maximizes growth rate and

minimizes variance (thereby both allowing RPV to invade
any pure population and minimizing the probability of
extinction due to environmental variation), the exact,
‘optimal’ switching rates for each objective differ; switch-
ing rate asymmetries mirror lifecycle asymmetries if
growth rate logðlsÞ is being maximized (e.g. p1 ¼ p2 &
gx1=gy241 ) ðsy=sxÞsopt41), whereas they are faster and
inversely related to lifecycle asymmetries if variance s2

is being minimized (e.g. p1 ¼ p2 & gx1=gy24
1 ) ðsx=syÞsopt41) (data not shown). Because RPV can
minimize growth rate variance even when it does not
maximize long-term growth rate, the net effect of
incorporating growth rate variance into a definition of
fitness and thus ESS—aside from shifting the optimal
switching rates—is to expand the range of lifecycles and
sensor profiles giving rise to RPV.

We conclude that in highly asymmetric lifecycles that
are not highly autocorrelated, a pure strategy (maximiz-
ing stochastic growth rate) is likely able to invade an
RPV population. However, pure strategists can also be
more vulnerable to extinction due to ‘unlucky’ runs in
the environment. In contrast, an RPV population is
vulnerable to invasion by pure strategists, but is
relatively protected against unexpected environmental
trajectories. How evolution might balance this trade-off
between vulnerability to mutant invasion and vulner-
ability to environmental uncertainty is unclear.

Time varying selection over the population is required

for RPV selection: Thus far, we have focused on time
varying environments, wherein different environmental
states select for different cell states. Infection processes,
however, usually involve cells moving from the outside
to the inside of a host, and once inside, from host
compartment to host compartment. To investigate
whether a spatial, asynchronous version of the Devil’s
Compromise scenario selects for random phase varying
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phenotypes, as does the temporal, synchronous version
explored elsewhere in this paper, we constructed a
number of models (see Appendix B for a low-dimen-
sional one). As in the synchronous Devil’s Compromise
scenario, this class of lifecycle (and model) comprises a
number of different environmental states, each selecting
for and against different (opposite) cell states. However,
individual cells move asynchronously from (spatially
discrete), time-invariant environment to environment
according to a Markov process, rather than having the
entire population simultaneously subject to a time-
varying environment that transitions between environ-
mental states in a Markov fashion (see inset in Fig. 6 for
illustration). To our surprise, we found that RPV does
not maximize growth rate in this type of lifecycle. A
maximal eigenvalue mesh plot for the equations in
Appendix B, which describe a simple, two-environment,
two-cell state version of asynchronous, spatial Devil’s
Compromise scenario, illustrates that the ESS strategy
is a non-phase varying polymorphism (sy ¼ 0 and/or
sx ¼ 0) rather than RPV (sx40 and sy40) (Fig. 6).

Mathematically, one can reason about the differences
between synchronous temporal and asynchronous spa-
tial Devil’s Compromise lifecycles by comparing their
growth exponents (dominant eigenvalues). Growth
exponents are derived from a matrix product in the
former, and from a single, higher-dimensional matrix in
the latter (see Section 5). RPV can render the
eigenvalues of the matrix products larger than the
product of the eigenvalues from each matrix, whereas
Fig. 6. RPV (red and blue trajectories) does not maximize growth rate

in a spatial, asynchronous version of the Devil’s Compromise scenario.

A polymorphism (pink curve, at sx ¼ sy ¼ 0) is ESS when individual

bacterial cells move asynchronously from environment to environment

according to a Markov process. For this plot, growth rates lxð2Þ �

mxð2Þ ¼ lyð1Þ � myð1Þ ¼ �0:4 and lxð1Þ � mxð1Þ ¼ lyð2Þ � myð2Þ ¼ 0:3;
Dt ¼ 1; and m1;2 ¼ m2;1 ¼ 0:1 in Eq. (5). Insets are the maximal

eigenvalue mesh plot (upper), and an illustration of cells moving

asynchronously between spatially discrete environments (lower).
the eigenvalues of the single, large matrix for the
asynchronous case can never be larger than in the pure
strategy case.

A more intuitive explanation derives from a con-
sideration of the costs and benefits of RPV. The only
conceptual difference between the temporal and spatial
versions of the Devil’s Compromise, as we have defined
them, is that in the former, the variable selective forces
are applied synchronously to the entire population,
whereas in the latter, variable selective forces are applied
asynchronously to individual cells. In the spatial,
asynchronous version of the Devil’s Compromise,
RPV exacts a cost: the conversion of cells in a favored
cell state to unfavourable cell states reduces the growth
rate of the population in each environment of the
lifecycle. However, unlike the synchronous Devil’s
Compromise scenario, these costs are not outweighed
by benefits. Because each spatially distinct environment
is time-invariant, promoting growth of the same favored
cell state without interruption, there is no need to create
an ‘artificial’ reservoir of favored cell state subpopula-
tions to populate each environment. If seeded by an
initial population heterogeneity (polymorphism), fa-
voured cell state subpopulations are maintained in each
environment. This example illustrates the principle that
it is selection over the population, as generated by a time-

varying environment acting on cells without environ-
mental sensors that selects for phase varying phenotype
expression. Time-invariant, density independent envir-
onments, and asynchronous variable selection over
individual cells do not suffice. From these examples,
we conclude that that though the lifecycles of randomly
phase varying pathogens have a spatial component, they
must also be subject to time-varying selective forces
acting synchronously or near-synchronously on the
population. Such population level selection could be a
product of time-varying selection within different spatial
locations, or, alternatively, from near-synchronous
movement of subpopulations from locale to locale
(see Section 4). For a treatment of diploid polymorph-
ism in temporally and spatially varying environments,
see Gillespie (1975).

3.2. Phase variation with imperfect sensors in a time-

varying environment

Most realistic models of signal transduction fall
somewhere in between the extremes of perfect and
absent environmental sensors. There is evidence that at
least some RPV is tuned to environmental conditions.
For example, the switching rates and type 1 piliation
level of uropathic E. coli populations are temperature
and medium dependent. On-to-off switching of pili
expression can be fast (0.3/cell/gen in rich medium by
some estimates) or slow (0.001/cell/gen in poor nutrient
medium), with off-to-on switching rates peaking at
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Fig. 7. RPV with imperfect environmental sensors. If cells have

environmental sensors with a defect that renders a subset of

environmental transitions unobservable with high probability, RPV

between ‘selected’ cell states in this set can maximize expected long-

term growth rate: (a) RPV (red) out-competes a sensor-based pure

strategy (blue), if environmental transitions are observable with

probability 0.1. Inset is a mesh plot of long-term growth rate

(Malthusian exponent) as a function of switching rates ðsx1; sy1Þ:
The maximum occurs at an RPV strategy with sx1 ¼ sy1 � 0:1. b) At

higher levels of observability (pObsX0:2), a sensor based pure strategy

(blue) outcompetes a RPV strategy (red). Note that sx ¼ 0 at the

optimal growth rate (we set sx ¼ sx1 ¼ sy2 and sy ¼ sy1 ¼ sx2 in the

inset mesh plot). Parameters ps11 ¼ ps22 ¼ 1 (accuracy is maximal),

rate ¼ 0 (there is no additive noise), N1 ¼ N2 ¼ 10; and all other

parameters are as defined in Fig. 3.
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mammalian host body temperature (Gally et al., 1993)
(see (Saunders et al., 2003) for an updated technique for
measuring RPV switching rates and possible caveats for
currently measured switching rates). Presumably, this
environmental modulation creates piliated populations
in the bladder and unpiliated populations outside the
host, where they are less useful. Similarly, Staphylococ-

cus aureus uses cell density and environmental signals to
control the expression of toxins, adhesins, and capsular
proteins, allowing for coordinated virulence factor
expression within a host.

In this section, we look at different types of sensor
defects (unobservable environmental transitions, incor-
rect identification of environmental states, signal trans-
duction delays, and additive noise), and different classes
of environments, and analyse for combinations that give
rise to RPV as an ESS. Because RPV is selected for if
cells have no sensors and live out a time varying, Devil’s
compromise lifecycle (see previous section), we expected
that significant sensing defects of any type would select
for RPV in equivalent environmental conditions. We
envisioned a transition from a ‘sensor-based pure’
strategy (If environmental sensors read ~E ¼ E1; express
cell state x: ELSE, express y) to an RPV strategy as
sensor goodness declined. To our surprise, we found
that not all types of sensor defects give rise to RPV in
Devil’s Compromise time-varying scenarios, even if
those defects are extreme. Only sensor defects rendering
a subset of environmental transitions unobservable to the
cell with high probability, or long signal transduction
delays relative to the timescale of environmental change
(in effect simulating unobservability), select for RPV. In
the two-environment, two cell state example modelled
by Eq. (1) (with other parameters listed in the caption of
Fig. 7), for instance, random phase varying expression
of x and y phenotypes maximizes growth rate only if
environmental transitions between E2 and E1 are
observable with probability less than 0.2 (see Fig. 7
and 10a,b). With just slightly more observable environ-
mental transitions, no amount of additive noise or
inaccuracy in identifying new environments resulted in a
survival advantage for RPV strategists.

Though we did not prove it for the general case of
arbitrarily many cell states and environmental states
(as we did in Theorem 1), a large number of numerical
experiments, conducted as described in Section 5,
support the conjecture that RPV is ESS if the likelihood
of cycling through a set of states satisfying the Devil’s
compromise is high, and if the probability of the sensor
being able to observe environmental transitions within
this set is low. Intuitively, if there are unobservable
transitions between environmental states with opposing
selective criteria, RPV reduces the risk of extinction by
protecting against the event that the environment cycles
between these unobservable states for an extended
period of time.
A sensor-based mixed strategy: Other types of sensor
defects introduce other adaptations. One such adapta-
tion results from sensors that can reliably detect
environmental transitions, but have poor precision in
identifying new environments (and thus do not
‘know’ the best cell state for a new environment). This
type of sensor defect can give rise to a strategy that
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probabilistically diversifies the population into different
cell state subpopulations upon entry into a new
environment, a sensor-based, mixed strategy that looks
very much like heterogeneous stress response deploy-
ment in B. subtilis (Msadek, 1999), or the partitioning of
stressed bacterial populations into lysing ‘donor’ and
DNA or nutrient uptake ‘recipient’ subpopulations
(Steinmoen et al., 2002; Gonzalez-Pastor et al., 2003;
Webb et al., 2003). More precisely stated, a sensor-based
mixed strategy takes a noisy measurement of environ-
mental state and maps it onto a cell state probability
(e.g. if the sensor reads (environmental transition, new

environment ¼ Ei) then express x with probability Pi and
y with probability 1�Pi). Environmental transitions
could be sensed through signal-integrating switches or
pulse generator circuitry, as in the SigB controlled
general stress response in Gram positive bacteria
(Hecker and Volker, 2001). Below, we formally prove
that if cells with an arbitrary number of cell states have
sensors that can sense environmental transitions, a
sensor-based mixed strategy can out-compete an RPV

strategy, even one that ‘recalibrates’ switching prob-
abilities upon entry into a new environment.

Theorem 2. (A sensor-based mixed strategy can out-
compete RPV or pure strategies if cells have sensors that
can detect environmental transitions).

Consider a third population of bacteria in addition to

those defined in Theorem 1, P3, that has partial sensors:

they can sense environmental transitions but not the

environment itself. Assume that population P3 uses this

information as follows: at each environmental transition,

for 1pipk, the subpopulation in cell state si divides into

the k cell states in the following proportions:a fraction

switches to cell state sj, forjai, and the remaining

(12ðk21Þa) fraction remain in cell state si; a is as

defined in Theorem 1. We will say that P3 follows a

sensor-based mixed strategy.

In the setup of Theorem 1 let us make the additional

assumption that in each environment there is a unique

cell state with the highest growth rate. Then the growth

rate of P3, the sensor-based mixed strategy population,

dominates that of P2, the randomly phase varying

population.

Proof. See Appendix A.
The assumption in Theorem 2 that there is a unique

strategy having the highest growth rate can be dispensed
with by considering, in each environment, all strategies
having the highest growth rate. The argument in the
proof essentially points out that in the presence of
partial sensors that can sense environmental transitions,
RPV only depletes the preferred subpopulation in each
environmental state and hence a sensor-based mixed
strategy dominates

a sensor-based RPV strategy.
Observe that in Theorem 2, the sensor-based mixed
strategist population P3 can utilize information on
environmental transitions even more effectively if
instead of dividing in proportions specified above, it
divides in proportions determined by growth rates and
times spent in various environments, and makes use of
noisy estimates of environmental state should they be
available. Evolution by natural selection would arrive
at these optimal rates. For example, with sen-
sors rendering environmental transitions observable
(pObs ¼ 1), but environmental identification accuracy
low (ðps11; ps22Þ ¼ ð0:6; 0:6Þ), the ESS for our two cell
state, two environment population (Eq. (1)) living an
asymmetric lifecycle that alternates between spending 50
generations in E1 and 3 generations in E2 is as follows:
express x with probability p1 � 0:4 and y with
probability ð1 � p1Þ � 0:6 upon an environmental tran-
sition, if the environmental state estimate reads ~E ¼ E2;
express x with probability p1 ¼ 1 upon an environ-
mental transition should the estimate be ~E ¼ E1
(see Fig. 8a). Note that optimal mixture probabilities
reflect lifecycle asymmetries in a sort of ‘rich get richer’
fashion, biasing the population composition in favor of
those cell states selected by dominant environmental
states.

A low-pass filtered pure strategy. Other sensor defects,
such as additive noise or mildly defective observability
and accuracy, mostly select for a sensor-based pure
strategy. For cells with sensors that are reasonably good
at identifying environmental transitions and environ-
mental states, a sensor-based pure strategy (If ~E ¼ E1;
express x: ELSE, express y) can out-compete random
phase variable or sensor-based mixed strategies (Figs.
7b, 8b and 10), even though all populations would
appear somewhat heterogeneous and phase variable
under a microscope due to sensor noise. Because a pure
strategy in the presence of noise is essentially a
deterministic rule based on a noisy measurement, high-
frequency noise on environmental sensors introduces the
specter of detrimental high-speed cell state switching
‘chatter’. To counter this tendency, the ESS strategy in
such noisy environments is pure but with a twist in the
form of low-pass filtering. Bacterial signal transduction
can be very fast, on the order of milliseconds (from
ligand binding to response regulator modification in a
two component system (Grimshaw et al., 1998; Stewart
and Van Bruggen, 2004)), or on the order of 30 min or
more if the ‘output signal’ is defined as multiple
transcriptional events downstream of a signal transduc-
tion pathway (McClure, 1980; McAdams and Arkin,
1997). A low-pass filtered pure strategy, a signal
transduction network design with built-in inertia in
processing and responding to environmental signals, has
a noise-filtering effect that increases the long-term
growth rate of the population in noisy environments
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Fig. 8. Sensor defects giving rise to sensor-based mixed and pure

strategies: (a) If cells growing in asymmetric Devil’s Compromise

lifecycles have environmental sensors that can reliably detect environ-

mental transitions, but have poor accuracy in identifying new

environments, a sensor-based mixed strategy out-competes a sensor-

based pure strategy (red) or an RPV strategy (blue) (sensor accuracy is

ðps11; ps22Þ ¼ ð0:6; 0:6Þ). Notice the optimal mixing probabilities

ðP1;P2Þ ¼ ð1; 0:4Þ: (b) With reasonably accurate sensing, pure strategy

cells win out (the optimal mixing probabilities are ðP1;P2Þ ¼ ð1; 0Þ; a

sensor-based pure strategy). Inset figures are contour plots of long-

term growth rate as a function of mixing probabilities. All parameters

are as in Fig. 3 except for the asymmetric lifecycle defined by N1 ¼ 50

and N2 ¼ 3 (the population alternates between spending 50 genera-

tions in E1 and 3 generations in E2).

Fig. 9. Low-pass filtering increases fitness if additive noise level is

high. A low-pass filtered sensor-based pure strategy (magenta;

sx1 ¼ sy2 ¼ 0:3; sy1 ¼ sx2 ¼ 0) outcompetes a pure strategy with a

faster response time (blue; sx1 ¼ sy2 ¼ 1:5; sy1 ¼ sx2 ¼ 0). Inset is a

mesh plot of long-term growth rate as a function of switching rates

ðsx1; sy1Þ; showing a maximum at the low-pass filtered pure strategy

ðsx1 ¼ sy2 ¼ 0:3; sy1 ¼ sx2 ¼ 0Þ: Environmental and growth rate

parameters are as in Fig. 3, with sensor parameters pObs ¼ 0:6; ps11 ¼

ps22 ¼ 0:8 and additive noise rate ¼ 1.
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over that of a fast-responding pure strategy or any other
competing strategy. For example, with sensors rendering
environmental transitions reasonably observable
(pObs ¼ 0:6), and environmental identification reason-
ably accurate (ðps11; ps22Þ ¼ ð0:8; 0:8Þ), but with signifi-
cant additive noise (rate ¼ 1), the ESS for our two cell
state, two environment population (Eq. (1)) is a low pass
filtered pure strategy with transition rates ðsx1 ¼ sy2 ¼

0:3; sy1 ¼ sx2 ¼ 0Þ (Fig. 9). The low-pass filtering is
evident from the local maximum in growth rate at the
relatively sluggish switching rate of ðsx1 ¼ sy2 ¼ 0:3Þ
(Fig. 9, inset); without additive noise, the faster the cell
state switching rate is upon entry into a new environ-
ment, the better (Fig. 7b). Just as there is a Nyquist rate
guide to sampling rates in electronic signal processing
(Oppenheim et al., 1983), there is a ‘best’ signal
transduction speed and post-processing profile in
bacteria that is fast enough to optimize cell proliferation
in a noisy time-varying environment, but not so fast as
to trigger excessive, detrimental phenotype switching in
response to noise. The growth advantage conferred by
low-pass filtering is even more pronounced if cell state
switching costs are explicitly taken into account
(see modeling section and Appendix D).

An ESS bifurcation plot: Evolutionarily stable strate-
gies depend on a populations’ sensor-defect profile and
on the environment in which the population lives. A
population living a Devil’s Compromise time-varying
lifecycle with sensors unable to sense environmental
transitions over an ‘extinction set’ can be expected to
exhibit RPV over the extinction set, though perhaps not
outside of this set. A population with sensors able to
sense environmental transitions but unable to correctly
identify new environments will exhibit a probabilistic,
sensor-based mixed strategy, diversifying upon entry
into a new environmental state (if the lifecycle is
asymmetric). If those sensors provide a decent ‘guess’
at environmental location, in addition to signaling
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Fig. 10. ESS bifurcation diagrams. Evolutionarily stable strategies are

a function of the selective forces over the lifecycle of the organism, and

the ability of a cell to sense its environment. Thus, every point in the

parameter space (E, Q) maps onto an ESS, where E is the parameter

vector for the Markov process M or cycle times ðN1;N2Þ defining the

environment, and Q ¼ ðpObsji;Psij ; sqi;jðkÞÞ; i; j; k ¼ 1 : 2; is the para-

meter vector defining the environmental sensor. Though such a

complete bifurcation diagram is too high-dimensional to show here, we

show a few slices: (a) Bifurcation diagram showing the dependence of

ESS on observability and additive noise. Sensor accuracy is Psii ¼ 0:6;
i ¼ 1;2; and the lifecycle is symmetric ðN1 ¼ N2 ¼ 10Þ: (b) Bifurcation

diagram showing the dependence of ESS on sensor accuracy Psii and

environmental-transition observability pObs, with no additive noise

(rate ¼ 0) and an asymmetric lifecycle defined by (N1 ¼ 50;N2 ¼ 3).

Notice transitions from sensor-based mixed, to pure, to RPV, to low-

pass filtered versions of each strategy as the parameters vary.
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environmental transitions, the ESS is a pure, determi-
nistic strategy based on a potentially noisy signal. If the
signal is too noisy, the ESS adaptation is a low-pass
filtered pure strategy—signal processed deterministic
regulation driven by a noisy input—or a low-pass
filtered mixed strategy, should sensor accuracy be low.
These observations distill into a map from the contin-
uous space of sensor-defect profile to the discrete space
of ESS class, predicated on particular environmental
lifecycle conditions. A bifurcation plot, slices of which
are shown in Fig. 10, is a visual aid to understanding
this map, though the high dimensionality of the sensor-
space undermines its utility to some extent (see
Materials and methods for a description of ESS

bifurcation plot construction). Note that the location
of the boundaries between different ESSs depend upon
lifecycle asymmetries and environmental autocorrela-
tion. Strong lifecycle asymmetries bias the ESS toward a
mixed strategy, requiring greater sensor accuracy to shift
the ESS from mixed to pure. Conversely, less asym-
metric lifecycles bias the ESS toward a pure strategy,
even if the sensor accuracy is low.

Getting the most bang for your sensor buck: Consider-
ing that perfect sensing is likely expensive, if not
impossible, the question arises as to what the best
return might be on the sensor ‘dollar’. Is it better to have
observable environmental transitions but poor accuracy
in identifying environmental states, or unobservable
transitions over a subset of environmental states but
more precise estimates of environmental location? What
is the cost in terms of fitness of different sensor deficits,
and thus the direction of selective pressure in evolving
new sensing capabilities? We investigated these ques-
tions (very simply) by constraining total sensor good-
ness to the sum observability+accuracy ¼ 1 and
determining what balance between environmental tran-
sition observability and environmental identification
accuracy maximizes fitness as measured by the long-
term growth rate of the population (Fig. 11; normalized
parameters observability ¼ pObs and accuracy ¼ 2�
(Psii�0.5)). We found that in the absence of additive
sensor noise, the sensor design that maximizes fitness
spends every possible sensing ‘dollar’ on observability,
and none on accuracy (Fig. 11, green curve). In the
presence of sensor noise, dividing resources between
observability and accuracy maximize fitness, with a
greater share going to observability (Fig. 11, blue and
red curves).
4. Discussion/conclusion

Microbial populations with different sensor profiles in
the exact same environment will adopt different
evolutionarily stable strategies, depending on the types
of sensing failures they experience. We find that if cells
are unlikely to sense environmental transitions or are
subject to long signal transduction delays relative to the
time-scale of environmental change, a time-varying

environment can select for phase varying phenotype
expression, if different environmental states select for
different cell states. We call this scenario a Devil’s

Compromise, because RPV is neither optimal nor ESS in
any one environmental state, yet it is required for
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Fig. 11. Getting the most bang for your sensor buck. This plot shows

maximal long-term growth rate of the population as a function of

sensor accuracy and observability, with total sensor ‘goodness’

constrained by the equation accuracy+observability ¼ 1. Thus, at one

end of the sensing spectrum the cell registers environmental transitions

but has no information about the identity of the environment

(observability ¼ 1, accuracy ¼ 0), whereas on the other end of the

spectrum observability ¼ 0 and accuracy ¼ 1. In the absence of

additive sensor noise, every sensor ‘dollar’ should be spent on sensing

environmental transitions and none on accuracy in identifying new

environments (green curve: the optimum occurs at ðpObs; psiiÞ ¼ ð1; 0ÞÞ:
In the presence of additive noise, the optimal sensor design distributes

sensor dollars between observability and accuracy, with greater weight

placed on observability (red and blue curves: optima occur at

ðpObs; psiiÞ ¼ ð0:9; 0:6Þ and ðpObs; psiiÞ ¼ ð0:8; 0:7Þ; respectively). In

these plots, observability ¼ pObs, the probability of sensing environ-

mentat transitions (pObs 2 ½0; 1
), and accuracy ¼ 2� (psii-.5), where

psii ¼ the probability that the sensor will read q ¼ Ei when the cell is

in environment Eiðpsii 2 ½0:5; 1
Þ:
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survival over the lifecycle of the organism. Alternatively,
RPV can be viewed as effecting a Parrondo paradox
(Harmer et al., 2001) wherein random alternations
between losing strategies produce a winning strategy.

Optimal RPV cell state switching rates are fast
enough to ensure the availability of high-fitness pheno-
types to future environmental states, but not so fast as
to unnecessarily drain the population of cells expressing
high-fitness phenotypes in the current environmental
state. Optimal switching rate magnitudes are inversely
proportional to environmental autocorrelation, whereas
optimal switching rate asymmetries mirror lifecycle
asymmetries. Thus, an observation of RPV transition
rates allows prediction of the temporal and probabilistic
features of the lifecycle that gave rise to the strategy.
Conversely, this linkage can serve as a guideline for
designing time-varying environments to experimentally
direct the evolution of particular RPV strategies, or to
design an environment that ‘beats’ the bacterium at its
game in health or bioremediation applications.

If cells have other sensor defects such as additive noise
or environmental misidentification, RPV is not selected
in ‘Devil’s Compromise’ time varying environments. If,
however, a population’s sensors can detect environ-
mental transitions, but have poor precision in identify-
ing new environments (and thus the optimal cell state),
the ESS is to probabilistically diversify the population, a
sensor-based, mixed strategy that looks very much like
heterogeneous stress response deployment in B. subtilis.
Bet hedging is a good metaphor for sensor-based mixed
strategies; environmental transitions are signaled (initia-
tion of a bet and race), but uncertainty about the new
environment (winning horse) calls for diversification
over phenotypes (competing horses) according to the
probabilistic rule governing the lifecycle (odds).

In the presence of excess additive noise on an
environmental signal, a sensor-based mixed strategy
requires low-pass filtering to maintain evolutionary
stability. Low-pass filtering of noisy signals is imple-
mented in cells by cascades, negative feedback, feed-
forward architectures (Mangan and Alon, 2003), hyster-
esis (Ferrell, 2002), orientational control of invertible
DNA elements (Wolf and Arkin, 2002), and a variety of
1st, 2nd and 3rd order chemical reactions (Samoilov et
al., 2002; Rao et al., 2002; Wolf and Arkin, 2003). With
sensors that can identify environmental transitions and
new environmental states with reasonable accuracy, the
ESS is a sensor-based pure (deterministic) strategy, also
low-pass filtered in the presence of additive noise. Even
in lifecycles for which RPV does not maximize long-
term growth rate, RPV can minimize growth rate
variance and minimize the risk of being extinguished
by rare, potentially catastrophic environmental trajec-
tories. RPV minimizes growth rate variance by
‘closing the growth rate gap’ between different environ-
mental states and protects against environmental
fluctuations by seeding new environments with high-
fitness phenotypes.

With the exception of the sensor-based pure strategy,
the above diversification strategies have in common that
they are not optimal or even ESS in any particular
environmental state examined in isolation, though they
maximize the long-term growth rate of the population as
it moves through its lifecycle. In contrast, in Part II of
this study (Wolf et al., 2005) we show that a frequency-
dependent environment where the fitnesses of cell states
are greatest when rare does select for diversification,
even when viewed in isolation. Such environments
support pure and RPV strategies polymorphically at
the ESS composition and a non-ESS optimal RPV

strategy playing the cooperator role in a modified game
of Prisoner’s Dilemma. The population would be most
fit in such an environment if all cells randomly phase
varied at the optimal rate, but individual cells have a
growth-rate incentive to defect (mutate) to other switch-
ing rates or non-phase variable phenotype expression,
leading to an overall loss of fitness of the individual and
the population (Wolf et al., 2005). Polymorphisms are
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also supported by a spatial, asynchronous version of the
Devil’s Compromise lifecycle, a scenario defined by
individual cells moving asynchronously among spatially
distinct environments. The contrast between the syn-
chronous (selecting for RPV) and asynchronous (sup-
porting non-phase varying polymorphisms) versions of
the Devil’s Compromise shows that stationary popula-
tions experiencing temporal environmental fluctuations
face difficulties comparable to those experienced by
mobile populations in spatially heterogeneous environ-
ments only if migration has a synchronous component,
and underscores that it is selection over the population,
as generated by a time-varying environment acting on
cells with defective or absent environmental sensors,
that selects for phase varying phenotype expression.
Time-invariant, density-independent environments, and
spatial, asynchronous selection over individual cells do
not suffice.

We developed these results on a linear random matrix
model because it captures essential features of the
systems under investigation, and because a large body
of analytical, simulation and conceptual machinery
backs such models. The strength of this type of model
is that (1) cells can have different phenotypic states at
different times, (2) the advantage conferred by each state
depends on the state of the environment, (3) cells can
take in information from the environment to select a cell
state, and (4) these sensors can be noisy, delayed, or
misleading. However, the model does not explicitly
capture resource competition and consumption. Though
the approach we take is standard for investigating time-
varying environments, and can be interpreted as
competition for fluctuating resources, work demonstrat-
ing important effects of resource competition opens the
question of what insights might be missed by not
explicitly modeling population effects on the environ-
ment. Hansen and Hubbel, for example, demonstrated
the competitive advantage of bacterial strains that can
persist at low concentrations of a limiting resource
(Hansen and Hubbel, 1980). In models such as ours
resource competition would turn up indirectly as non-
linear, saturating growth rates (Caswell, 2001, Chapter
16)) or as additional environmental states and possibly
non-Markovian environmental transitions (Tuljapur-
kar, 1990). In the case of simple saturating growth we
can easily extend our model and show that our results
qualitatively hold (though over slightly different para-
meter ranges). While we have not yet analysed models
with non-Markov environments or continuous resource
consumption for conditions giving rise to diversification
strategies, this is clearly an important and rich area of
study. By explicitly taking resource limitation and
population effects on the environment into account,
we expect to find even more situations in which
diversification is the ESS. There is some evidence in
the current literature, for example, that phenotypic
diversification of populations into fast and slow growers
protects against fluctuations in nutrient levels (Balaban
et al., 2004).

4.1. Competing hypotheses?

The results from this paper and from (Wolf et al.,
2004), summarized in Table 3, add several variables to
those proposed by Ancel-Meyers and Bull to predict
selection among the different classes of adaptive
phenotypic variation (Ancel Meyers and Bull, 2003).
Specifically, we add (1) the (in)ability of a cell to sense its
environment, representing defects in environmental
transition observability, environmental identification
accuracy, additive noise, and signal transduction delays,
(2) the environmental rate of change (autocorrelation)
matrixed with environmental lifecycle asymmetries, (3)
frequency dependent selection in the environment (Wolf
et al., 2005), and (4) cell state switching transition costs.
Our results also provide a framework for considering
competing hypotheses on the genesis of RPV, including
(H1) RPV as a generator of antigenic diversity and
immune system evasion, (H2) RPV as a means for
searching receptor spaces, and (H3) RPV as a vehicle for
seeding new environments with high fitness phenotypes
then subject to clonal expansion on (Hallet, 2001).

Hypotheses (H1-3) on the genesis and utility of RPV are
not contradictory. The combined forces exerted by a
time-varying and frequency-dependent immune re-
sponse conspire to select for RPV as a survival strategy
in mammalian pathogens, though in this case the
‘selected’ cell state is ‘immune naiveté’. Within a single
host, time-varying selection is at work as the immune
system cycles through the process of identifying antigens
and producing antibodies (on the order of 4–7 days) (De
Clercq, 2001), and as the population moves from host
compartment to compartment over the course of an
infection. Variability among potential hosts also creates
time varying selection on slow scales, as populations
move from host to host, and frequency-dependent
selection. An antigenic variant is more likely to find a
new host naı̈ve of that variant if it is rare in the
population, thus making the fitness conferred by any
particular variant a function of its frequency in the
population, a view supported by an analysis by Ancel-
Meyers et al. of the role of phase shifting in N.

meningitides pathogenicity (Meyers et al., 2003). Re-
ceptor variation is more likely to give rise to RPV

among a smaller number of adhesin variants, acting as a
form of memory for receptor distribution among and
within hosts and the resulting time-varying and possibly
frequency dependent selective forces acting on the
population. All other things being equal, the fitness
conferred by each type of adhesion molecule would be
greatest when rare.
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Table 3

Results summarya

Strategy Sensor profile Environmental profile

O A D N

RPV No environmental sensor Devil’s Compromise lifecycle: time-varying environment with different environmental states

selecting for different cell states. Mild lifecycle asymmetries or large environmental

autocorrelation. Optimal switching rates a function of lifecycle asymmetries and

environmental autocorrelation. Time variation required (spatial variation insufficient).

Low Xb X X

X X Long X

N.A.c Frequency dependent environment with mixed ESS. ESS ¼ Polymorphism@ESS_f ;

OPT ¼ RPV_Opt. (modified Prisoner’s Dilemma with RPV_Opt as the non-ESS

cooperation strategy2)

Sensor based mixed High Poor oLong Low Devil’s Compromise lifecycle. Asymmetric lifecycle required. Optimal mixing probabilities

biased toward selected cell-states in dominant environmental states.
Sensor based mixed; LPF High Poor oLong High

Sensor based pure High High oLong X Temporally or spatially varying environment with each environmental state selecting for a

single cell state

High Medium oLong Low

Sensor based pure; LPF High Medium oLong High

Pure No environmental sensor Devil’s Compromise lifecycle. Lifecycle highly asymmetric without high environmental

autocorrelation

Low X X X

X X Long X

aThis table summarizes how the ESS of a bacterial species depends on the environment(s) it lives in and the ability of cells to sense the environment. Strategies represented include RPV (randomly

alternate between different phenotypes, with transition probabilities possibly a function of sensor information), sensor-based mixed (use sensor information to probabilistically diversify population

upon transitioning to a new environment), sensor-based pure (use sensor information to deterministically select phenotype), low-pass filtered (LPF) versions of sensor-based mixed and pure

strategies (deliberately build in response inertia to filter out sensor noise), and a sensor-independent pure strategy (monomorphic population in a single cell state). Sensor defects include unobservable

environmental transitions (Observability (O) ¼ Low), inability to accurately identify the identity of a new environment (Accuracy (A) ¼ Low), long signal transduction delays relative to the

frequency of environmental change (Delay (D) ¼ Long), and high additive noise (Noise (N) ¼ High). One reads the table as follows: ‘‘RPV is an ESS when the population lives in a Devil’s

Compromise time-varying environment and sensors are either absent or characterized by low observability of some environmental transitions or high signal transduction delays relative to the rate of

environmental change’’, and so on.
bAn x in the table denotes ‘don’t care’. 2 Part II of this study (Wolf et al., 2005) describes how environments that select for rare phenotypes also select for diversification strategies, and define a

modified Prisoner’s Dilemma game with RPV at optimal rates serving as the non-ESS cooperation strategy.
cResults from the analysis of frequency-dependent environments (Wolf et al., 2005) do not depend on sensor profile, unless one considers the possibility of cells communicating with one another in

order to select the cooperation strategy of randomly phase variation at optimal (rather than ESS) rates.
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Hypothesis (H3), that RPV provides a means for
seeding new environments with high fitness phenotypes
then subject to clonal expansion, is not really distinct
from antigenic diversity and receptor space search
hypotheses. Rather, it is an abstraction of the time-
varying components of immune and receptor selectivity,
and any other fluctuating environment that is the rule
for microbial life. It is exactly the Devil’s Compromise
scenario described above, a time varying environment
with different environmental states selecting for differ-
ent cell states, with our added precondition that these
environmental transitions be largely unobservable to the
cell. RPV contains the memory of frequently visited
environmental states, and, in its more mutation-like
form, permits exploration and colonization of new
niches, avoiding ‘mutational error catastrophe’(Eigen,
2002) by confining high mutation rates to selected loci.

4.2. Name-that-game experiments

Though in this paper and in Wolf et al., 2005 we have
constructed a framework for understanding some of the
environmental and cell-sensory conditions that can give
rise to RPV and other diversification strategies, experi-
ments similar to those of Turner and Chao to
reconstruct the RNA phage game (Turner and Chao,
1999, 2003) are needed to sift through hypotheses of
how phase variation functions over the lifecycle of a
particular organism (for caveats on experimentally
validating game theoretic predictions, see (Orzack,
1994)). For example, with two environments E1 and
E2; and two cell states x and y; the following
experiments can ‘name that game’ or at least distinguish
between Devil’s compromise time-varying selection and
frequency-dependent selection of the sort where the
fitnesses of cell states are greatest when rare.

Phase variation as a Devil’s compromise: If phase
variation functions as a Devil’s compromise, optimal or
ESS within no single environment within the lifecycle
yet required for long-term survival, experiments in
which the population is locked in a single cell state
and growth rate is measured in each environment would
show that x does well in E1 and poorly in E2; and y does
well in E2 and poorly in E1: The wild type phase varying
population should grow in E1 and E2; though not as
well as the selected pure strategists in each environment.
Mixtures of phase-locked cells would see the x

subpopulation out-competed by the y subpopulation
in E2 and the y population out-competed by the x

population in E1; cycling between E1 and E2
would lead to extinction or slowed growth of the
entire polymorphic population relative to the phase
varying population.

Diversification as a response to frequency-dependent

selection: If phase variation or another diversification
strategy is a response to frequency-dependent selection
in an environment Ei as described in Wolf et al. (2005),
an experiment that mixes phase-locked x and y cells will
show that the population settles to a steady-state
composition, with neither x outcompeting y to extinc-
tion nor the other way around. Furthermore, a mixture
of x and y cells will grow faster in Ei than does either a
pure-x or a pure-y population. In the unlikely event that
RPV is at optimal rates, playing the cooperation
strategy in the game of modified Prisoner’s Dilemma
(see Wolf et al., 2005) rather than merely a single-
genome means for generating the mixed ESS population
composition, the addition of a few phase-locked x and y

‘defector’ cells to a wild type RPV population will result
in a change in the steady-state population composition
and a decrease of overall fitness of the population.

4.3. Do diverse designs play different games, or are they

evolutionary spandrels?

Though in this paper we confine ourselves to the study
of diversification strategies on the abstract phenotype,
cell, and population levels, a more complete under-
standing calls upon us to focus ‘down’ a level of
abstraction to study the similarities and differences
among diversification mechanisms across pathways and
species, and ‘up’ a level to define and compare the
ecological composition of particular niches. The inte-
gration of analysis on all three levels in an evolutionary
context is necessary if we hope to understand why some
RPV mechanisms are based on DNA rearrangement,
whereas others employ slipped strand mispairing (SSM),
DNA shuffling by gene conversion and allele replace-
ment, or epigenetic mechanisms, and the similarities and
differences of network designs in each category (Hen-
derson et al., 1999; Hallet, 2001). How much of the
diversity in a population arises due to lack of control of
noise in a system (endogenous or exogenous), and how
much is there to serve an evolutionary purpose? Are
these diverse designs merely evolutionary spandrels
(Gould and Lewontin, 1979; Gould, 1997; Rao et al.,
2004), or are differences in the physics of the environ-
mental factors being sensed, the intracellular signaling
molecules transducing environmental signals, pathway
cross-regulation, or the ‘game’ of survival played by
each microbe responsible for distinct mechanisms? To
distinguish between these possibilities there is challen-
ging theory and experiment to be done such as coming
up with consistent theories of network evolution,
experimentally measuring dynamics in single cells,
tracking population heterogeneity under varying condi-
tions, quantifying fitness, and designing experiments
to test and generate game theoretic hypotheses. In any
case, full elucidation of these themes will likely emerge
from integrated application of classical molecular
biology techniques with regulatory network deduction
and analysis (Covert et al., 2004), comparative
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genomics, cellular engineering (Kobayashi et al., 2004),
and evolutionary game theory, an important addition to
the Systems Biology toolbox (Kitano, 2002; Levchenko,
2003; Sauro et al., 2003) because of its power to relate
the fitness of cellular design and behaviour to environ-
mental and ecological dynamics (Wolf and Arkin, 2003).
5. Materials and methods

The results in this paper, even those that were
subsequently generalized and proved rigorously, were
initially observed by numerically exploring a family of
models over a wide range of parameter values using the
general purpose simulation and analysis software
Matlab (Mathworks, Natick, Massachusetts, United
States), as follows.

5.1. Periodically time varying environments (alternating

between N1 time steps in E1 and N2 time steps in E2)

Simulation: A program to simulate population growth
of imperfect-sensing cells living in a periodically varying
environment calculates successive updates in the popu-
lation vector ~X in Eq. (1), alternating between N1 time
steps in environment E1 (update ~X using the matrix
Rd1T21 in the event of an environmental transition from
E2 to E1 at the last time step; use Rd1 otherwise) and N2
time steps in E2 (update~Xusing the matrixRd2T12 in the
event of an environmental transition from E1 to E2 at
the last time step; use Rd2 otherwise).

Calculating the ESS: The ESS of cells with the sensor
profile Q ¼ ðpObsji;Psij ; sqi;jðkÞÞ; i; j; k ¼ 1 : 2; growing in
a periodically time-varying environment is determined
by calculating the maximal eigenvalue of the 4� 4
matrix [T21RN2

d2 T12RN1
d1 ] as a function of strategy S ¼

ðsx1; sy1; sx2; sy2;P1;P2Þ; for all strategies over the
(digitized) strategy space sx1 ¼ ½0 : Ds : sMAX 
; sy1 ¼ ½0 :
Ds : sMAX 
; sx2 ¼ ½0 : Ds : sMAX 
; sy2 ¼ ½0 : Ds : sMAX 
;
P1 ¼ ½0 : Dp : 1
 and P2 ¼ ½0 : Dp : 1
: The upper bound
sMAX is chosen to be large enough to ensure that if any
component of the fitness-maximizing ESS S� ¼

ðsx�
1; sy�

1; sx�
2; sy�2;P

�
1;P

�
2Þ is finite, it is contained in the

strategy search space. For the range of growth rates and
lifecycles reported on in this paper, sMAX ¼ 20 is
sufficiently large. Sampling increments Ds and Dp are
initially chosen for a coarse-grained approximation to
S* (e.g. Ds ¼ sMAX=200; Dp ¼ 0:05) and then reduced in
the neighborhood of the approximation for arbitrarily
greater accuracy. In the case of a symmetric environ-
ment and symmetric sensors (which produce a sym-
metric ESS), we simplified our search by setting
sx2 ¼ sy1 and sy2 ¼ sx1: Table 1 summarizes the
constraints on S* indicating RPV, sensor-based mixed,
sensor-based pure, and low-pass filtered versions of
sensor-based mixed and pure strategies as an ESS. For
example, we conclude that the ESS is (1) RPV between
cell states x and y if (sx�

140; sy�
140; sx�

240; sy�
240;

P�
1 ¼ 1; P�

2 ¼ 0); (2) a sensor-based mixed strategy if
ðsx�

1 ¼ 0; sy�140; sx�
240; sy�

2 ¼ 0;P�
1o1;P�

240Þ; (3) a
sensor-based pure strategy (not low pass filtered) if
ðsx�

1 ¼ 0; sy�1 ! 1; sx�
2 ! 1; sy�

2 ¼ 0;P�
1 ¼ 1;P�

2 ¼ 0Þ;
(4) a low-pass filtered sensor-based pure strategy if
ðsx�

1 ¼ 0;14sy�
140;14sx�

240; sy�
2 ¼ 0;P�

1 ¼ 1;P�
2 ¼

0Þ; and so on. If the ESS is RPV, the optimal cell
state switching transition rates are given by ðsx�

i ; sy�
i Þ:

More exotic combinations, such as probabilistic mixing
among RPV sub-strategies (e.g. sx�

140; sy�
140;

sx�
240; sy�

240;P�
1o1;P�

240) or heterogeneous combi-
nations of sub-strategies (e.g. sx�

1 ¼ 0; sy�
1 ! 1;

sx�
240; sy�

240;P�
1 ¼ 1;P�

2 ¼ 0), are possible as well
(data not shown).

Generating ESS bifurcation diagrams: To generate the
ESS bifurcation diagrams in Fig. 10, we wrote a
program that (1) calculates the ESS S� ¼

ðsx�
1; sy�

1; sx�
2; sy�

2;P
�
1;P

�
2Þ as a function of the two sensor

parameters being varied over the entire strategy space,
as described above, (2) generates an ESS function ‘n’ by
assigning each point in the two dimensional sensor
parameter space to one of five numbers: n ¼ 1 if
S*

¼ RPV; n ¼ 2 if S*
¼ sensor-based pure; n ¼ 3 if

S*
¼ sensor-based mixed; n ¼ 4 if S*

¼ sensor-based
pure, LPF; and n ¼ 5 if S*

¼ sensor-based mixed, LPF,
and (3) generates the bifurcation diagram by applying
the Matlab ‘contour’ plotting function to the ESS

function ‘n’.
The no-sensor case is handled similarly, with the

following simplifications: (1) a strategy is defined by
the parameters S ¼ ðsx; syÞ; (2) the fitness function is the
maximal eigenvalue of the 2� 2 matrix [R0

d2
N2

R0
d1

N1],
and (3) Eq. (11) is simulated rather than Eq. (1).

5.2. Stochastically time-varying environments

Simulation: The program simulating population
growth in a randomly time varying environment (1)
invokes Eq. (5) to calculate the probability that the
environment is in environmental state Ei at time ðk þ

1ÞDt given the environmental state at time kDt; (2)
selects the new environmental state with a random
number generator, given this probability, (3) calculates
the new population vector ~X at time ðk þ 1ÞDt by
multiplying the population vector at the previous step
by the environmental-state-dependent rate and transi-
tion matrices as in Eq. (1) or (11). The initial
environmental state is drawn from the stationary
distribution over the environmental state space.

Calculating stochastic growth rate and growth rate

variance: The simulation algorithm in Section 14.3.6.2 of
Caswell (2001) by Cohen et al. (1983) is implemented
to estimate logðlsÞ; the stochastic growth rate or
Lyapunov exponent of a population. The approximation



ARTICLE IN PRESS
D.M. Wolf et al. / Journal of Theoretical Biology ] (]]]]) ]]]–]]] 23
in Section 14.3.7 of Caswell (2001) is used to estimate the
growth rate variance s2:

Calculating the ESS: To calculate the ‘ESS’ of a
population growing in a Markov environment, we
followed the procedure described for periodic environ-
ments, with the exception that we used the stochastic
growth rate log(ls) as a measure of fitness instead
of a maximal eigenvalue of a matrix product. To
investigate how an inclusion of growth rate variance
in the fitness function would impact the ESS,
we repeated this procedure with fitness functions
f 1 ¼ l logðlsÞ � ð1 � lÞs2; l 2 ½0; 1
; and f 2 ¼

logðlsÞ=s2:

5.3. Spatially heterogeneous environment with a Markov

dispersal process governing individual cell movement from

environment to environment

The program that determines the ESS of a strategy
ðsx; syÞ of motile cells living in a spatially varying
environment calculates the maximal eigenvalue of the
matrix Rds in Eq. (9) as a function of strategy ðsx; syÞ

over the strategy space sx ¼ ½0 : Ds : sMAX 
; sy ¼ ½0 : Ds :
sMAX 
; with sMAX420: One could also consider
population dispersal rates m1,2 and m2,1 as part of
the strategy, and find the fitness-maximizing strategy
ðsx�; sy�;m�

1;2;m
�
2;1Þ:

5.4. Parameter value ranges

Numerical experiments were run over the following
parameter ranges (for i; j ¼ 1; 2): Environmental:
1pN1;N2p10; 000; 0op1;2;p2;1o1: Growth: �4plxðiÞ

�mxðiÞp4; �4plyðiÞ � myðiÞp4: Strategies: 0pPip1;
0psxi;syjp20: Sensors: 0p pObsjip1; 0.5pPsij p1;
0pratep10. Dispersion: 0pm1;2p10: Discretization:
0.0001pDtp1. Figs. 2–10 were generated with growth
rates lxð2Þ � mxð2Þ ¼ lyð1Þ � myð1Þ ¼ �0:4 and lxð1Þ �
mxð1Þ ¼ lyð2Þ � myð2Þ ¼ 0:3; Dt ¼ 1: Other parameter
values are specified in figure captions and text.

Contact dmwolf@lbl.gov for our Matlab m-files.
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Appendix A. Proofs
Proof of Theorem 1. The long-term growth rate of
a pure strategy subpopulation in cell state si is
governed by

Ym

j¼1

ðgi;jÞ
pj :

By the assumption made in the theorem, this product
iso1 for each cell state. Hence a population consisting
of non phase-variable cells will go extinct with
probability 1.

Next consider the random phase variable population
P2: Assume that in each generation, a fraction, a; of
bacteria in cell state Si switch to cell state S0

i; for each
pair i; i0 of cell states, where

a ¼
�

ð1 þ 2�Þðk � 1Þ
:

Observe that this value of a satisfies

gtðjÞ;jð1 � ðk � 1ÞaÞ41 þ �

and hence while in environment Ej ; the subpopulation
in cell state tðjÞ keeps growing even though a part of

it is lost in each generation due to switching. Ob-
serve further that l and a are related as follows:
l ¼ 2 logð1=aÞ= logð1 þ �Þ:

While in an environment Ej ; we will only consider the
subpopulation in the preferred cell state tðjÞ; and when
the environment changes from Ej to Ej0; we will only
consider the subpopulation that switches from cell state
tðjÞ to tðj0Þ: Let Y j be a random variable denoting the
number of generations spent in environment Ej: In this
part of the lifecycle, the total growth rate of this
subpopulation is

XðgtðjÞ;jð1 � ðk � 1ÞaÞÞYj4ð1 þ �ÞY ja:

Next, let us consider this subpopulation as it goes
through n environments. Let Y 1; . . . ;Y n be random
variables denoting the number of generations spent in
these environments. The total growth rate in this part of
the lifecycle is

Xð1 þ �ÞY1þY2þ...Ynan:

Let random variable Y ¼ Y 1 þ Y 2 þ . . .Y n: We want
to place an upper bound on the lower tail of Y : Let
X 1; . . . ;X n be geometrically distributed random vari-
ables with Pr½X i ¼ t
 ¼ pð1 � pÞt�1: Since the probabil-
ity that M remains in any state is X1 � p; Y i dominates
X i; and placing an upper bound on the lower tail of X

will help place an upper bound on the lower tail of Y :
More precisely,

Pr Yo
nð1 � dÞ

p

� 

pPr Xo

nð1 � dÞ
p

� 

:

mailto:dmwolf@lbl.gov
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Consider a coin having probability of p of coming up
Heads. Observe that X 1 has the same distribution as the
number of flips of this coin until the first Head, and
X has the same distribution as the position of the
nth Head. Clearly, E½X i
 ¼ 1=p and E½X 
 ¼ n=p: We
want to upper bound the probability of the event
½Xonð1FdÞ=p
:

Let a new random variable X 0 be the number of
Heads among the first nð1 � dÞ=p coin flips. Then the
event ½Xonð1FdÞ=p
 is the same as the event ½X 0

Xn
:
The probability of the latter is easily upper bounded,
since X 0 can be viewed as the sum of nð1FdÞ=p

independent Poisson trials with mean m ¼ nð1FdÞ: Let
D ¼ d=ð1 � dÞ; so that ð1 þ DÞm ¼ n: Applying the
Chernoff bound (Alon, 2000), we get

Pr Xo
nð1 � dÞ

p

� 

¼ Pr½X 0

Xð1 þ DÞm


o exp�ðmD2=4Þ

¼ exp�
nd2

4ð1 � dÞ

� 

:

Therefore, the event ½YXnð1 � dÞ=p
 has overwhelm-
ing probability. By the choice of p; nð1 � dÞ=pXnl:
Therefore, with overwhelming probability, Y 1 þ Y 2 þ

. . .Y nXnl: Hence the total growth rate of the sub-
population is at least

ð1 þ �Þnlan ¼ ð1 þ �Þnl
�

ð1 þ 2�Þðk � 1Þ

� �n

X
1

an
:

[Observe the role played by the relationship between l
and a in simplifying this expression.] Hence, the size of
the random phase variable population P2 diverges with
n; with overwhelming probability. &

Proof of Theorem 2. For each environment Ej ; let sðjÞ
denote the unique strategy that has the largest growth
rate. By the assumption in Theorem 1, the growth rate
of this strategy is 41 þ 2�: Consider the sensor-based
mixing population P3 as it goes through n environ-
mental states, say E1; . . . ;En; and assume that
Rs ¼

lxð1Þ � mð1Þx � m1;2 � sx sy m2;1 0

sx lyð1Þ � mð1Þy � m1;2 � sy 0 m2;1

m1;2 0 lxð2Þ � mð2Þx � m2;1 � sx sy

0 m1;2 sx lyð2Þ � mð2Þy � m21 � sy

2
66664

3
77775:

(10)
Y 1; . . . ;Y n are random variables denoting the number
of generations spent in these environments. The
dominant term in the growth rate of P3 is obtained by
tracing in each environment the subpopulation having
the largest growth rate, and is given by

Yn

j¼1

ð1 � ðk � 1ÞaÞðgsðjÞ;jÞ
Yj :

The corresponding term for the random phase
variable population P2 differs in two respects: First,
this (preferred) subpopulation depletes by a fraction
ðk � 1Þa in each generation due to switching to other
strategies. Second, a corresponding fraction of other
subpopulations switches to this (preferred) subpopula-
tion. However, since the other subpopulations have
lower growth rates, the first effect dominates the second
and results in a net depletion. Hence the growth rate of
P3 dominates that of P2: &
Appendix B. (Model of asynchronous, spatial Devil’s

Compromise)

In the asynchronous, spatial version of the Devil’s
Compromise scenario, individual cells move asynchro-
nously from spatially discrete environment to environ-
ment according to a Markov process, rather than having
the entire population subject to a time-varying environ-
ment that transitions between environmental states in a
Markov fashion, as does Eq. (1). A bacterial population
consisting of cells without environmental sensors that
can alternate between x and y states and move
asynchronously between environments E1 and E2
follows a trajectory given by Eq. (9), defined by a state
vector ~Y and rate matrix Rds; defined below:

~Y kþ1 ¼ Rds
~Y k: (9)

The population state vector ~Y ¼ ½xl ; y1;x2; y2

0; where

xi is the number of cells in the population in state x in
environment Ei (i ¼ 1 or 2), and yi is the number of cells
in the population in state y in environment Ei: The rate
matrix Rds ¼ eRsDt is the discretized version of the
continuous-time growth rate matrix Rs (shown below),
derived from the rate equations for the Master Equation
tracking Pr(~Y ¼ ½n m r q
0):
In matrix Rs; liðiÞ and mjðiÞ are the birth and death
transition probability rates, respectively, of cells in state
j (x or y) in environment Ei, sx and sy the x-to-y and y-
to-x cell state transition probability rates, respectively,
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and mij the transition state probabilities of individual
cells moving from environment Ei to Ej. Notie that
in contrast to Eqs. (1) and (11), Eq. (9) has a time-
invariant rate matrix (Rds does not depend upon the
time step k).
Appendix C. (Reduced model for the no-sensor case)

Without sensors, Eq. (1) reduces to the two dimen-
sional system:

~X kþ1 ¼ R0
diðkÞ

~X k: (11)

The population state vector ~X ¼ ½x y
0; where x is the
number of cells in the population in state x and y is the
number of cells in the population in state y with sensors
reading Ē ¼ Ei. As in Eq. (1), the rate matrix R0

di ¼

eR0
i
Dt is the discretized version of the continuous-time

growth rate matrix R0
i (shown below), derived from

the rate equations for the Master Equation tracking
Pr([x y] ¼ [n m]) in environment Ei, where n and m

are nonnegative integers:

R0
i ¼

lxðiÞ � mxðiÞ � sx sy

sx lyðiÞ � myðiÞ � sy

" #
: (12)

In the matrix R0
i; lsðiÞ and msðiÞ are the birth and death

transition probability rates, respectively, of cells in state
s (s ¼ x or y) in environment Ei (i ¼ 1 or 2), and
parameters sx and sy are transition probability rates of
switching from cell state x-to-y or y-to-x, respectively.
Otherwise, modelling and simulation proceed as de-
scribed in Section 5.
Appendix D. (Generalizing the Microbial Diversification

Game (MDG) model)

The model instantiated as Eq. (1) can be extended to
capture an arbitrary number of cellular and environ-
mental states, cell state switching costs, microbe-
environment interactions such as nutrient consumption
and the creation of waste products, ecological diversity,
and intercellular communication, among other realistic
complexities. For example, with n cellular and m

environmental states, the population state vector is
the nm� 1 column vector X ¼ ½x11; x21; ::xn1; . . .
x1m;x2m; ::xnm


0; where xij ¼ number of cells in cell state
si with sensor reading Ej: Rate matrices Ri are expanded
accordingly to be of size nm� nm, with n� n block
matrices along the diagonal representing Markov chain,
sensor-based sub-strategies Si over the n cell states, and
off-diagonal blocks consisting of n� n diagonal sensor
switching matrices. Cell state switching costs can be
explicitly represented by doubling the size of the cell
state space, adding low growth rate or high resource
consumption ‘refractory’ sub-states that the cell must
pass through upon switching to each new cell state.
Ecological diversity is easily represented as well, by
equations with a population column vector of length
n1m1 � n2m2... � nkmk; where k is the number of
different microbial species, nj and mj are the number
of possible cellular and environmental states, respec-
tively, of species j: a vector consisting of ‘stacked’
population vectors of each species, with growth rates
that can depend upon total cross-species population size
and composition to explicitly represent inter- and intra-
strain competition. Resource competition can be indir-
ectly represented as nonlinear, saturating growth rates
(Caswell, 2001, Chapter 16) or as additional environ-
mental states corresponding to different nutrient levels,
and possibly non-Markovian environmental transitions
(Tuljapurkar, 1990). Explicit, continuous representation
of resource consumption and competition can be
achieved by adding resource variables to the model’s
state space as in Hansen and Hubbel (1980).
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